No Arabic abstract
We study the Schrodinger-Debye system over $mathbb{R}^d$ iu_t+frac 12Delta u=uv,quad mu v_t+v=lambda |u|^2 and establish the global existence and scattering of small solutions for initial data in several function spaces in dimensions $d=2,3,4$. Moreover, in dimension $d=1$, we prove a Hayashi-Naumkin modified scattering result.
In this paper, we study the solutions to the energy-critical quadratic nonlinear Schrodinger system in ${dot H}^1times{dot H}^1$, where the sign of its potential energy can not be determined directly. If the initial data ${rm u}_0$ is radial or non-radial but satisfies the mass-resonance condition, and its energy is below that of the ground state, using the compactness/rigidity method, we give a complete classification of scattering versus blowing-up dichotomies depending on whether the kinetic energy of ${rm u}_0$ is below or above that of the ground state.
In this paper, we simplify the proof of M. Hamano in cite{Hamano2018}, scattering theory of the solution to eqref{NLS system}, by using the method from B. Dodson and J. Murphy in cite{Dodson2018}. Firstly, we establish a criterion to ensure the solution scatters in $ H^1(mathbb{R}^5) times H^1(mathbb{R}^5) $. In order to verify the correctness of the condition in scattering criterion, we must exclude the concentration of mass near the origin. The interaction Morawetz estimate and Galilean transform characterize a decay estimate, which implies that the mass of the system cannot be concentrated.
We investigate the soliton dynamics for the Schrodinger-Newton system by proving a suitable modulational stability estimates in the spirit of those obtained by Weinstein for local equations.
In this paper, we show the scattering of the solution for the focusing inhomogenous nonlinear Schrodinger equation with a potential begin{align*} ipartial_t u+Delta u- Vu=-|x|^{-b}|u|^{p-1}u end{align*} in the energy space $H^1(mathbb R^3)$. We prove a scattering criterion, and then we use it together with Morawetz estimate to show the scattering theory.
In this paper we consider the inhomogeneous nonlinear Schrodinger equation $ipartial_t u +Delta u=K(x)|u|^alpha u,, u(0)=u_0in H^s({mathbb R}^N),, s=0,,1,$ $Ngeq 1,$ $|K(x)|+|x|^s| abla^sK(x)|lesssim |x|^{-b},$ $0<b<min(2,N-2s),$ $0<alpha<{(4-2b)/(N-2s)}$. We obtain novel results of global existence for oscillating initial data and scattering theory in a weighted $L^2$-space for a new range $alpha_0(b)<alpha<(4-2b)/N$. The value $alpha_0(b)$ is the positive root of $Nalpha^2+(N-2+2b)alpha-4+2b=0,$ which extends the Strauss exponent known for $b=0$. Our results improve the known ones for $K(x)=mu|x|^{-b}$, $muin mathbb{C}$ and apply for more general potentials. In particular, we show the impact of the behavior of the potential at the origin and infinity on the allowed range of $alpha$. Some decay estimates are also established for the defocusing case. To prove the scattering results, we give a new criterion taking into account the potential $K$.