No Arabic abstract
The magnetic moment in the superconducting and normal state of a crystalline FeTe0.65Se0.35 superconductor, grown by the Bridgmans method with relatively high growth rate, was measured. The temperature and magnetic field dependences of magnetization and its relaxation time were determined. Studied crystal, being non-uniform due to high growth rate of 5 mm/h, exhibits smaller width of superconducting transition in comparison with an ideal crystal grown with velocity of 1 mm/h, and the difference in magnetic properties of crystals grown with various growth rate, related to their microstructure, is discussed.
In this paper, we address a number of outstanding issues concerning the nature and the role of magnetic inhomogenities in the iron chalcogenide system FeTe1-xSex and their correlation with superconductivity in this system. We report morphology of superconducting single crystals of FeTe0.65Se0.35 studied with transmission electron microscopy, high angle annular dark field scanning transmission electron microscopy and their magnetic and superconducting properties characterized with magnetization, specific heat and magnetic resonance spectroscopy. Our data demonstrate a presence of nanometre scale hexagonal regions coexisting with tetragonal host lattice, a chemical disorder demonstrating non homogeneous distribution of host atoms in the crystal lattice, as well as hundreds-of-nanometres-long iron-deficient bands. From magnetic data and ferromagnetic resonance temperature dependence, we attribute magnetic phases in Fe-Te-Se to Fe3O4 inclusions and to hexagonal symmetry nanometre scale regions with structure of Fe7Se8 type. Our results suggest that nonhomogeneous distribution of host atoms might be an intrinsic feature of superconducting Fe-Te-Se chalcogenides and we find a surprising correlation indicating that faster grown crystal of inferior crystallographic properties is a better superconductor.
We use a model of vortex dynamics and collective weak pinning theory to study the residual dissipation due to trapped magnetic flux in a dirty superconductor. Using simple estimates, approximate analytical calculations, and numerical simulations, we make predictions and comparisons with experiments performed in CERN and Cornell on resonant superconducting radio-frequency NbCu, doped-Nb and Nb$_3$Sn cavities. We invoke hysteretic losses originating in a rugged pinning potential landscape to explain the linear behavior of the sensitivity of the residual resistance to trapped magnetic flux as a function of the amplitude of the radio-frequency field. Our calculations also predict and describe the crossover from hysteretic-dominated to viscous-dominated regimes of dissipation. We propose simple formulas describing power losses and crossover behavior, which can be used to guide the tuning of material parameters to optimize cavity performance.
The issue concerning the nature and the role of microstructural inhomogeneities in iron chalcogenide superconducting crystals of FeTe0.65Se0.35 and their correlation with transport properties of this system was addressed. Presented data demonstrate that chemical disorder originating from the kinetics of the crystal growth process significantly influences the superconducting properties of an Fe-Te-Se system. Transport measurements of the transition temperature and critical current density performed for microscopic bridges allow us to deduce the local properties of a superconductor with microstructural inhomogeneities, and significant differences were noted. The variances observed in the local properties were explained as a consequence of weak superconducting links existing in the studied crystals. The results confirm that inhomogeneous spatial distribution of ions and small hexagonal symmetry nanoscale regions with nanoscale phase separation also seem to enhance the superconductivity in this system with respect to the values of the critical current density. Magnetic measurements confirm the conclusions drawn from the transport measurements.
The magnetization anisotropy of a layered superconductor FeTe0.65Se0.35 sample is experimentally studied in a magnetic field directed either along the layers of the plane, or perpendicular to them. The value of the vortex pinning potential in a weak magnetic field, and the critical current density ratio are determined for these directions. The results are discussed within the framework of presenting the sample as layers of fine single crystals, divided by weak interlayer superconducting bonds with magnetic inclusions.
The influence of a periodic landscape of pinning sites on the vortex dynamics in Pb thin films is explored by ac-susceptibility measurements. For different amplitudes h of the ac-drive, the ac-susceptibility x=x+ix exhibits a complex field dependence associated with different dynamic regimes. At very low ac-drives where both, multiquanta vortices trapped by the antidots and interstitial vortices oscillate inside the pinning potential (intra-valley motion), a small kink in x(H) together with a very low dissipation is observed. At intermediate ac-excitations such that vortices in the antidots remain pinned whereas interstices are driven out of the pinning well, a more pronounced kink in the screening coinciding with the onset of dissipation (x(H) ~ 0) indicates the entrance of interstitial vortices. Eventually, at high enough amplitudes all vortices are set in motion and the penetration of interstitial vortices appears as a sudden reduction of the shielding power. We show that these distinctive features allow us to clearly identify the maximum number of flux quanta per hole regardless the vortex dynamic regime.