We study the nuclear magnetic relaxation rate and Knight shift in the presence of the orbital and quadrupole interactions for three-dimensional Dirac electron systems (e.g., bismuth-antimony alloys). By using recent results of the dynamic magnetic susceptibility and permittivity, we obtain rigorous results of the relaxation rates $(1/T_1)_{rm orb}$ and $(1/T_1)_{rm Q}$, which are due to the orbital and quadrupole interactions, respectively, and show that $(1/T_1)_{rm Q}$ gives a negligible contribution compared with $(1/T_1)_{rm orb}$. It is found that $(1/T_1)_{rm orb}$ exhibits anomalous dependences on temperature $T$ and chemical potential $mu$. When $mu$ is inside the band gap, $(1/T_1)_{rm orb} sim T ^3 log (2 T/omega_0)$ for temperatures above the band gap, where $omega_0$ is the nuclear Larmor frequency. When $mu$ lies in the conduction or valence bands, $(1/T_1)_{rm orb} propto T k_{rm F}^2 log (2 |v_{rm F}| k_{rm F}/omega_0)$ for low temperatures, where $k_{rm F}$ and $v_{rm F}$ are the Fermi momentum and Fermi velocity, respectively. The Knight shift $K_{rm orb}$ due to the orbital interaction also shows anomalous dependences on $T$ and $mu$. It is shown that $K_{rm orb}$ is negative and its magnitude significantly increases with decreasing temperature when $mu$ is located in the band gap. Because the anomalous dependences in $K_{rm orb}$ is caused by the interband particle-hole excitations across the small band gap while $left( 1/T_1 right)_{rm orb}$ is governed by the intraband excitations, the Korringa relation does not hold in the Dirac electron systems.