Do you want to publish a course? Click here

Inferring Generative Model Structure with Static Analysis

72   0   0.0 ( 0 )
 Added by Bryan He
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Obtaining enough labeled data to robustly train complex discriminative models is a major bottleneck in the machine learning pipeline. A popular solution is combining multiple sources of weak supervision using generative models. The structure of these models affects training label quality, but is difficult to learn without any ground truth labels. We instead rely on these weak supervision sources having some structure by virtue of being encoded programmatically. We present Coral, a paradigm that infers generative model structure by statically analyzing the code for these heuristics, thus reducing the data required to learn structure significantly. We prove that Corals sample complexity scales quasilinearly with the number of heuristics and number of relations found, improving over the standard sample complexity, which is exponential in $n$ for identifying $n^{textrm{th}}$ degree relations. Experimentally, Coral matches or outperforms traditional structure learning approaches by up to 3.81 F1 points. Using Coral to model dependencies instead of assuming independence results in better performance than a fully supervised model by 3.07 accuracy points when heuristics are used to label radiology data without ground truth labels.



rate research

Read More

Learning and inference movement is a very challenging problem due to its high dimensionality and dependency to varied environments or tasks. In this paper, we propose an effective probabilistic method for learning and inference of basic movements. The motion planning problem is formulated as learning on a directed graphic model and deep generative model is used to perform learning and inference from demonstrations. An important characteristic of this method is that it flexibly incorporates the task descriptors and context information for long-term planning and it can be combined with dynamic systems for robot control. The experimental validations on robotic approaching path planning tasks show the advantages over the base methods with limited training data.
Imitation learning in a high-dimensional environment is challenging. Most inverse reinforcement learning (IRL) methods fail to outperform the demonstrator in such a high-dimensional environment, e.g., Atari domain. To address this challenge, we propose a novel reward learning module to generate intrinsic reward signals via a generative model. Our generative method can perform better forward state transition and backward action encoding, which improves the modules dynamics modeling ability in the environment. Thus, our module provides the imitation agent both the intrinsic intention of the demonstrator and a better exploration ability, which is critical for the agent to outperform the demonstrator. Empirical results show that our method outperforms state-of-the-art IRL methods on multiple Atari games, even with one-life demonstration. Remarkably, our method achieves performance that is up to 5 times the performance of the demonstration.
State-of-the-art (SOTA) Generative Models (GMs) can synthesize photo-realistic images that are hard for humans to distinguish from genuine photos. We propose to perform reverse engineering of GMs to infer the model hyperparameters from the images generated by these models. We define a novel problem, model parsing, as estimating GM network architectures and training loss functions by examining their generated images -- a task seemingly impossible for human beings. To tackle this problem, we propose a framework with two components: a Fingerprint Estimation Network (FEN), which estimates a GM fingerprint from a generated image by training with four constraints to encourage the fingerprint to have desired properties, and a Parsing Network (PN), which predicts network architecture and loss functions from the estimated fingerprints. To evaluate our approach, we collect a fake image dataset with $100$K images generated by $100$ GMs. Extensive experiments show encouraging results in parsing the hyperparameters of the unseen models. Finally, our fingerprint estimation can be leveraged for deepfake detection and image attribution, as we show by reporting SOTA results on both the recent Celeb-DF and image attribution benchmarks.
When agents interact with a complex environment, they must form and maintain beliefs about the relevant aspects of that environment. We propose a way to efficiently train expressive generative models in complex environments. We show that a predictive algorithm with an expressive generative model can form stable belief-states in visually rich and dynamic 3D environments. More precisely, we show that the learned representation captures the layout of the environment as well as the position and orientation of the agent. Our experiments show that the model substantially improves data-efficiency on a number of reinforcement learning (RL) tasks compared with strong model-free baseline agents. We find that predicting multiple steps into the future (overshooting), in combination with an expressive generative model, is critical for stable representations to emerge. In practice, using expressive generative models in RL is computationally expensive and we propose a scheme to reduce this computational burden, allowing us to build agents that are competitive with model-free baselines.
Forecasting on sparse multivariate time series (MTS) aims to model the predictors of future values of time series given their incomplete past, which is important for many emerging applications. However, most existing methods process MTSs individually, and do not leverage the dynamic distributions underlying the MTSs, leading to sub-optimal results when the sparsity is high. To address this challenge, we propose a novel generative model, which tracks the transition of latent clusters, instead of isolated feature representations, to achieve robust modeling. It is characterized by a newly designed dynamic Gaussian mixture distribution, which captures the dynamics of clustering structures, and is used for emitting timeseries. The generative model is parameterized by neural networks. A structured inference network is also designed for enabling inductive analysis. A gating mechanism is further introduced to dynamically tune the Gaussian mixture distributions. Extensive experimental results on a variety of real-life datasets demonstrate the effectiveness of our method.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا