Box polynomials and the excedance matrix


Abstract in English

We consider properties of the box polynomials, a one variable polynomial defined over all integer partitions $lambda$ whose Young diagrams fit in an $m$ by $n$ box. We show that these polynomials can be expressed by the finite difference operator applied to the power $x^{m+n}$. Evaluating box polynomials yields a variety of identities involving set partition enumeration. We extend the latter identities using restricted growth words and a new operator called the fast Fourier operator, and consider connections between set partition enumeration and the chromatic polynomial on graphs. We also give connections between the box polynomials and the excedance matrix, which encodes combinatorial data from a noncommutative quotient algebra motivated by the recurrence for the excedance set statistic on permutations.

Download