Correcting the extended-source calibration for the Herschel-SPIRE Fourier-Transform Spectrometer


Abstract in English

We describe an update to the Herschel-SPIRE Fourier-Transform Spectrometer (FTS) calibration for extended sources, which incorporates a correction for the frequency-dependent far-field feedhorn efficiency, $eta_mathrm{FF}$. This significant correction affects all FTS extended-source calibrated spectra in sparse or mapping mode, regardless of the spectral resolution. Line fluxes and continuum levels are underestimated by factors of 1.3-2 in the Spectrometer Long-Wavelength band (SLW, 447-1018 GHz; 671-294 $mu$m) and 1.4-1.5 in the Spectrometer Short-Wavelength band (SSW, 944-1568 GHz; 318-191 $mu$m). The correction was implemented in the FTS pipeline version 14.1 and has also been described in the SPIRE Handbook since Feb 2017. Studies based on extended-source calibrated spectra produced prior to this pipeline version should be critically reconsidered using the current products available in the Herschel Science Archive. Once the extended-source calibrated spectra are corrected for $eta_mathrm{FF}$, the synthetic photometry and the broadband intensities from SPIRE photometer maps agree within 2-4% -- similar levels to the comparison of point-source calibrated spectra and photometry from point-source calibrated maps. The two calibration schemes for the FTS are now self-consistent: the conversion between the corrected extended-source and point-source calibrated spectra can be achieved with the beam solid angle and a gain correction that accounts for the diffraction loss.

Download