Do you want to publish a course? Click here

Dynamic Graph Coloring

207   0   0.0 ( 0 )
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

In this paper we study the number of vertex recolorings that an algorithm needs to perform in order to maintain a proper coloring of a graph under insertion and deletion of vertices and edges. We present two algorithms that achieve different trade-offs between the number of recolorings and the number of colors used. For any $d>0$, the first algorithm maintains a proper $O(mathcal{C} d N^{1/d})$-coloring while recoloring at most $O(d)$ vertices per update, where $mathcal{C}$ and $N$ are the maximum chromatic number and maximum number of vertices, respectively. The second algorithm reverses the trade-off, maintaining an $O(mathcal{C} d)$-coloring with $O(d N^{1/d})$ recolorings per update. The two converge when $d = log N$, maintaining an $O(mathcal{C} log N)$-coloring with $O(log N)$ recolorings per update. We also present a lower bound, showing that any algorithm that maintains a $c$-coloring of a $2$-colorable graph on $N$ vertices must recolor at least $Omega(N^frac{2}{c(c-1)})$ vertices per update, for any constant $c geq 2$.



rate research

Read More

104 - Yannic Maus 2021
In this paper we present a deterministic CONGEST algorithm to compute an $O(kDelta)$-vertex coloring in $O(Delta/k)+log^* n$ rounds, where $Delta$ is the maximum degree of the network graph and $1leq kleq O(Delta)$ can be freely chosen. The algorithm is extremely simple: Each node locally computes a sequence of colors and then it tries colors from the sequence in batches of size $k$. Our algorithm subsumes many important results in the history of distributed graph coloring as special cases, including Linials color reduction [Linial, FOCS87], the celebrated locally iterative algorithm from [Barenboim, Elkin, Goldenberg, PODC18], and various algorithms to compute defective and arbdefective colorings. Our algorithm can smoothly scale between these and also simplifies the state of the art $(Delta+1)$-coloring algorithm. At the cost of losing the full algorithms simplicity we also provide a $O(kDelta)$-coloring algorithm in $O(sqrt{Delta/k})+log^* n$ rounds. We also provide improved deterministic algorithms for ruling sets, and, additionally, we provide a tight characterization for one-round color reduction algorithms.
We consider a decentralized graph coloring model where each vertex only knows its own color and whether some neighbor has the same color as it. The networking community has studied this model extensively due to its applications to channel selection, rate adaptation, etc. Here, we analyze variants of a simple algorithm of Bhartia et al. [Proc., ACM MOBIHOC, 2016]. In particular, we introduce a variant which requires only $O(nlogDelta)$ expected recolorings that generalizes the coupon collector problem. Finally, we show that the $O(nDelta)$ bound Bhartia et al. achieve for their algorithm still holds and is tight in adversarial scenarios.
The problem of (vertex) $(Delta+1)$-coloring a graph of maximum degree $Delta$ has been extremely well-studied over the years in various settings and models. Surprisingly, for the dynamic setting, almost nothing was known until recently. In SODA18, Bhattacharya, Chakrabarty, Henzinger and Nanongkai devised a randomized data structure for maintaining a $(Delta+1)$-coloring with $O(log Delta)$ expected amortized update time. In this paper, we present a $(Delta+1)$-coloring data structure that achieves a constant amortized update time and show that this time bound holds not only in expectation but also with high probability.
This paper initiates the study of the classic balanced graph partitioning problem from an online perspective: Given an arbitrary sequence of pairwise communication requests between $n$ nodes, with patterns that may change over time, the objective is to service these requests efficiently by partitioning the nodes into $ell$ clusters, each of size $k$, such that frequently communicating nodes are located in the same cluster. The partitioning can be updated dynamically by migrating nodes between clusters. The goal is to devise online algorithms which jointly minimize the amount of inter-cluster communication and migration cost. The problem features interesting connections to other well-known online problems. For example, scenarios with $ell=2$ generalize online paging, and scenarios with $k=2$ constitute a novel online variant of maximum matching. We present several lower bounds and algorithms for settings both with and without cluster-size augmentation. In particular, we prove that any deterministic online algorithm has a competitive ratio of at least $k$, even with significant augmentation. Our main algorithmic contributions are an $O(k log{k})$-competitive deterministic algorithm for the general setting with constant augmentation, and a constant competitive algorithm for the maximum matching variant.
Golovach, Paulusma and Song (Inf. Comput. 2014) asked to determine the parameterized complexity of the following problems parameterized by $k$: (1) Given a graph $G$, a clique modulator $D$ (a clique modulator is a set of vertices, whose removal results in a clique) of size $k$ for $G$, and a list $L(v)$ of colors for every $vin V(G)$, decide whether $G$ has a proper list coloring; (2) Given a graph $G$, a clique modulator $D$ of size $k$ for $G$, and a pre-coloring $lambda_P: X rightarrow Q$ for $X subseteq V(G),$ decide whether $lambda_P$ can be extended to a proper coloring of $G$ using only colors from $Q.$ For Problem 1 we design an $O^*(2^k)$-time randomized algorithm and for Problem 2 we obtain a kernel with at most $3k$ vertices. Banik et al. (IWOCA 2019) proved the the following problem is fixed-parameter tractable and asked whether it admits a polynomial kernel: Given a graph $G$, an integer $k$, and a list $L(v)$ of exactly $n-k$ colors for every $v in V(G),$ decide whether there is a proper list coloring for $G.$ We obtain a kernel with $O(k^2)$ vertices and colors and a compression to a variation of the problem with $O(k)$ vertices and $O(k^2)$ colors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا