Quark nuggets are theoretical objects composed of approximately equal numbers of up, down, and strange quarks and are also called strangelets and nuclearites. They have been proposed as a candidate for dark matter, which constitutes about 85% of the universes mass and which has been a mystery for decades. Previous efforts to detect quark nuggets assumed that the nuclear-density core interacts directly with the surrounding matter so the stopping power is minimal. Tatsumi found that quark nuggets could well exist as a ferromagnetic liquid with an approximately 10 trillion Tesla magnetic field. We find that the magnetic field produces a magnetopause with surrounding plasma, as the earths magnetic field produces a magnetopause with the solar wind, and substantially increases their energy deposition rate in matter. We use the magnetopause model to compute the energy deposition as a function of quark-nugget mass and to analyze testing the quark-nugget hypothesis for dark matter by observations in the air, water, and land. We conclude the water option is most promising.