Do you want to publish a course? Click here

Nanofabrication of Plasmonic Circuits Containing Single Photon Sources

135   0   0.0 ( 0 )
 Added by Hamidreza Siampour
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nanofabrication of photonic components based on dielectric-loaded surface plasmon-polariton waveguides (DLSPPWs) excited by single nitrogen vacancy (NV) centers in nanodiamonds is demonstrated. DLSPPW circuits are built around NV containing nanodiamonds, which are certified to be single-photon emitters, using electron-beam lithography of hydrogen silsesquioxane (HSQ) resist on silver-coated silicon substrates. A propagation length of ~20 {mu}m for the NV single-photon emission is measured with DLSPPWs. A 5-fold enhancement in the total decay rate and up to 63% coupling efficiency to the DLSPPW mode is achieved, indicating significant mode confinement. Finally, we demonstrate routing of single plasmons with DLSPPW-based directional cou-plers, revealing the potential of our approach for on-chip realization of quantum-optical networks.



rate research

Read More

The ability to harness light-matter interactions at the few-photon level plays a pivotal role in quantum technologies. Single photons - the most elementary states of light - can be generated on-demand in atomic and solid state emitters. Two-photon states are also key quantum assets, but achieving them in individual emitters is challenging because their generation rate is much slower than competing one-photon processes. We demonstrate that atomically thin plasmonic nanostructures can harness two-photon spontaneous emission, resulting in giant far-field two-photon production, a wealth of resonant modes enabling tailored photonic and plasmonic entangled states, and plasmon-assisted single-photon creation orders of magnitude more efficient than standard one-photon emission. We unravel the two-photon spontaneous emission channels and show that their spectral line-shapes emerge from an intricate interplay between Fano and Lorentzian resonances. Enhanced two-photon spontaneous emission in two-dimensional nanostructures paves the way to an alternative efficient source of light-matter entanglement for on-chip quantum information processing and free-space quantum communications.
104 - Yuntian Chen , Peter Lodahl , 2010
We propose a plasmon-based reconfigurable antenna to controllably distribute emission from single quantum emitters in spatially separated channels. Our calculations show that crossed particle arrays can split the stream of photons from a single emitter into multiple narrow beams. We predict that beams can be switched on and off by switching host refractive index. The design method is based on engineering the dispersion relations of plasmon chains and is generally applicable to traveling wave antennas. Controllable photon delivery has potential applications in classical and quantum communication.
Hexagonal boron nitride (h-BN), a prevalent insulating crystal for dielectric and encapsulation layers in two-dimensional (2D) nanoelectronics and a structural material in 2D nanoelectromechanical systems (NEMS), has also rapidly emerged as a promising platform for quantum photonics with the recent discovery of optically active defect centers and associated spin states. Combined with measured emission characteristics, here we propose and numerically investigate the cavity quantum electrodynamics (cavity-QED) scheme incorporating these defect-enabled single photon emitters (SPEs) in h-BN microdisk resonators. The whispering-gallery nature of microdisks can support multiple families of cavity resonances with different radial and azimuthal mode indices simultaneously, overcoming the challenges in coinciding a single point defect with the maximum electric field of an optical mode both spatially and spectrally. The excellent characteristics of h-BN SPEs, including exceptional emission rate, considerably high Debye-Waller factor, and Fourier transform limited linewidth at room temperature, render strong coupling with the ratio of coupling to decay rates g/max({gamma},k{appa}) predicated as high as 500. This study not only provides insight into the emitter-cavity interaction, but also contributes toward realizing h-BN photonic components, such as low-threshold microcavity lasers and high-purity single photon sources, critical for linear optics quantum computing and quantum networking applications.
On-chip photon sources carrying orbital angular momentum (OAM) are in demand for high-capacity optical information processing in both classical and quantum regimes. However, currently-exploited integrated OAM sources have been primarily limited to the classical regime. Herein, we demonstrate a room-temperature on-chip integrated OAM source that emits well-collimated single photons, with a single-photon purity of g(2)(0) = 0.22, carrying entangled spin and orbital angular momentum states and forming two spatially separated entangled radiation channels with different polarization properties. The OAM-encoded single photons are generated by efficiently outcoupling diverging surface plasmon polaritons excited with a deterministically positioned quantum emitter via Archimedean spiral gratings. Our OAM single-photon sources bridge the gap between conventional OAM manipulation and nonclassical light sources, enabling high-dimensional and large-scale photonic quantum systems for information processing.
Vacuum fluctuations are a fundamental feature of quantized fields. It is usually assumed that observations connected to vacuum fluctuations require a system well isolated from other influences. In this work, we demonstrate that effects of the quantum vacuum can already occur in simple colloidal nano-assemblies prepared by wet chemistry. We claim that the electromagnetic field fluctuations at the zero-point level saturate the absorption of dye molecules self-assembled at the surface of plasmonic nano-resonators. For this effect to occur, reaching the strong coupling regime between the plasmons and excitons is not required. This intriguing effect of vacuum-induced saturation (VISA) is discussed within a simple quantum optics picture and demonstrated by comparing the optical spectra of hybrid gold-core dye-shell nanorods to electromagnetic simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا