Chemical Mapping of the Milky Way With The Canada-France Imaging Survey: A Non-parametric Metallicity-Distance Decomposition of the Galaxy


Abstract in English

We present the chemical distribution of the Milky Way, based on 2,900$, {rm deg^2}$ of $u$-band photometry taken as part of the Canada-France Imaging Survey. When complete, this survey will cover 10,000$, {rm deg^2}$ of the Northern sky. By combing the CFHT $u$-band photometry together with SDSS and Pan-STARRS $g,r,$ and $i$, we demonstrate that we are able to measure reliably the metallicities of individual stars to $sim 0.2$ dex, and hence additionally obtain good photometric distance estimates. This survey thus permits the measurement of metallicities and distances of the dominant main-sequence population out to approximately 30 kpc, and provides much higher number of stars at large extraplanar distances than have been available from previous surveys. We develop a non-parametric distance-metallicity decomposition algorithm and apply it to the sky at $30deg < |b| < 70deg$ and to the North Galactic Cap. We find that the metallicity-distance distribution is well-represented by three populations whose metallicity distributions do not vary significantly with vertical height above the disk. As traced in main-sequence stars, the stellar halo component shows a vertical density profile that is close to exponential, with a scale height of around 3 kpc. This may indicate that the inner halo was formed partly from disk stars ejected in an ancient minor merger.

Download