No Arabic abstract
We present time-of-flight neutron total scattering and polarized neutron scattering measurements of the magnetically frustrated compounds NaCaCo$_2$F$_7$ and NaSrCo$_2$F$_7$, which belong to a class of recently discovered pyrochlore compounds based on transition metals and fluorine. The magnetic pair distribution function (mPDF) technique is used to analyze and model the total scattering data in real space. We find that a previously-proposed model of short-range XY-like correlations with a length scale of 10-15 AA, combined with nearest-neighbor collinear antiferromagnetic correlations, accurately describes the mPDF data at low temperature, confirming the magnetic ground state in these materials. This model is further verified by the polarized neutron scattering data. From an analysis of the temperature dependence of the mPDF and polarized neutron scattering data, we find that short-range correlations persist on the nearest-neighbor length scale up to 200 K, approximately two orders of magnitude higher than the spin freezing temperatures of these compounds. These results highlight the opportunity presented by these new pyrochlore compounds to study the effects of geometric frustration at relatively high temperatures, while also advancing the mPDF technique and providing a novel opportunity to investigate a genuinely short-range-ordered magnetic ground state directly in real space.
Cobalt pyrochlore fluoride NaCaCo$_2$F$_7$ is a disordered frustrated magnet composed of Co$^{2+}$ ions with an effective spin-$frac{1}{2}$ magnetic moment and exhibits spin freezing below $T_f sim$2.4 K. We perform ultrasound velocity measurements on a single crystal of the cubic NaCaCo$_2$F$_7$. The temperature dependence of the bulk modulus (the breathing elastic mode) exhibits Curie-type softening upon cooling below $sim$20 K down to $T_f$, which is suppressed by the magnetic field. This Curie-type softening should be a precursor to the enhancement of the strength of exchange disorder via the spin-lattice coupling, which causes the spin freezing. In contrast to the magnetic-field-suppressed Curie-type softening in the bulk modulus, the trigonal shear modulus exhibits softening with a characteristic minimum upon cooling, which is enhanced by the magnetic field at temperatures below $sim$20 K. This magnetic-field-enhanced elastic anomaly in the trigonal shear modulus suggests a coupling of the lattice to the dynamical spin-cluster state. For NaCaCo$_2$F$_7$, the observed elastic anomalies reveal an occurrence of magnetic-field-induced crossover from an isostructural lattice instability toward the spin freezing to a trigonal lattice instability arising from the emergent dynamical spin-cluster state.
The very nature of the ground state of the pyrochlore compound Yb$_2$Ti$_2$O$_7$ is much debated, as experimental results demonstrate evidence for both a disordered or a long-range ordered ground state. Indeed, the delicate balance of exchange interactions and anisotropy is believed to lead to competing states, such as a Quantum Spin Liquid state or a ferromagnetic state which may originate from an Anderson-Higgs transition. We present a detailed magnetization study demonstrating a first order ferromagnetic transition at 245 mK and 150 mK in a powder and a single crystal sample respectively. Its first-order character is preserved up to applied fields of $sim$ 200 Oe. The transition stabilizes a ferromagnetic component and involves slow dynamics in the magnetization. Residual fluctuations are also evidenced, the presence of which might explain some of the discrepancies between previously published data for Yb$_2$Ti$_2$O$_7$.
Holmium titanate (Ho$_2$Ti$_2$O$_7$) is a rare earth pyrochlore and a canonical example of a classical spin ice material. Despite the success of magnetic monopole models, a full understanding of the energetics and relaxation rates in this material has remained elusive, while recent studies have shown that defects play a central role in the magnetic dynamics. We used a scanning superconducting quantum interference device (SQUID) microscope to study the spatial and temporal magnetic fluctuations in three regions with different defect densities from a Ho$_2$Ti$_2$O$_7$ single crystal as a function of temperature. We found that the magnetic flux noise power spectra are not determined by simple thermally-activated behavior and observed evidence of magnetic screening that is qualitatively consistent with Debye-like screening due to a dilute gas of low-mobility magnetic monopoles. This work establishes magnetic flux spectroscopy as a powerful tool for studying materials with complex magnetic dynamics, including frustrated correlated spin systems.
Magnetic materials with pyrochlore crystal structure form exotic magnetic states due to the high lattice frustration. In this work we follow the effects of coupling of the lattice and electronic and magnetic degrees of freedom in two Praseodymium-based pyrochlores Pr$_2$Zr$_2$O$_7$ and Pr$_2$Ir$_2$O$_7$. In both materials the presence of magnetic interactions does not lead to magnetically ordered low temperature states, however their electronic properties are different. A comparison of Raman phonon spectra of Pr$_2$Zr$_2$O$_7$ and Pr$_2$Ir$_2$O$_7$ allows us to identify magneto-elastic coupling in Pr$_2$Zr$_2$O$_7$ that elucidates its magnetic properties at intermediate temperatures, and allows us to characterize phonon-electron coupling in the semimetallic Pr$_2$Ir$_2$O$_7$. We also show that the effects of random disorder on the Raman phonon spectra is small.
Er$_2$Sn$_2$O$_7$ remains a puzzling case among the extensively studied frustrated compounds of the rare-earth pyrochlore family. Indeed, while a first order transition towards a long-range antiferromagnetic state with the so-called Palmer-Chalker structure is theoretically predicted, it has not been observed yet, leaving the issue, as to whether it is a spin-liquid candidate, open. We report on neutron scattering and magnetization measurements which evidence a second order transition towards this Palmer-Chalker ordered state around 108 mK. Extreme care was taken to ensure a proper thermalization of the sample, which has proved to be crucial to successfully observe the magnetic Bragg peaks. At the transition, a gap opens in the excitations, superimposed on a strong quasielastic signal. The exchange parameters, refined from a spin wave analysis in applied magnetic field, confirm that Er$_2$Sn$_2$O$_7$ is a realization of the dipolar XY pyrochlore antiferromagnet. The proximity of competing phases and the strong XY anisotropy of the Er$^{3+}$ magnetic moment might be at the origin of enhanced fluctuations, leading to the unexpected nature of the transition, the low ordering temperature, and the observed multi-scale dynamics.