Do you want to publish a course? Click here

Cumulant Greens function calculations of plasmon satellites in bulk sodium: influence of screening and the crystal environment

211   0   0.0 ( 0 )
 Added by Jianqiang Zhou
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present ab initio calculations of the photoemission spectra of bulk sodium using different flavors of the cumulant expansion approximation for the Greens function. In particular, we study the dispersion and intensity of the plasmon satellites. We show that the satellite spectrum is much more sensitive to many details than the quasi-particle (QP) spectrum, which suggests that the experimental investigation of satellites could yield additional information beyond the usual studies of the band structure. In particular, a comparison to the homogeneous electron gas (HEG) shows that the satellites are influenced by the crystal environment, although the crystal potential in sodium is weak. Moreover, the temperature dependence of the lattice constant is reflected in the position of the satellites. Details of the screening also play an important role; in particular, the contribution of transitions from 2s and 2p semi-core levels influence the satellites, but not the QP. Moreover, inclusion of contributions to the screening beyond the RPA has an effect on the satellites. Finally, we elucidate the importance of the coupling of electrons and holes by comparing the results of the time-ordered (TOC) and the retarded (RC) cumulant expansion approximations. Again, we find small but noticeable differences. Since all the small effects add up, our most advanced calculation yields a satellite position which is improved with respect to previous calculations by almost one eV. This stresses the fact that the calculation of satellites is much more delicate than the calculation of a QP band structure.



rate research

Read More

The interaction of electrons with crystal lattice vibrations (phonons) and collective charge-density fluctuations (plasmons) influences profoundly the spectral properties of solids revealed by photoemission spectroscopy experiments. Photoemission satellites, for instance, are a prototypical example of quantum emergent behavior that may result from the strong coupling of electronic states to plasmons and phonons. The existence of these spectral features has been verified over energy scales spanning several orders of magnitude (from 50 meV to 15-20 eV) and for a broad class of compounds such as simple metals, semiconductors, and highly-doped oxides. During the past few years the cumulant expansion approach, alongside with the GW approximation and the theory of electron-phonon and electron-plasmon coupling in solids, has evolved into a predictive and quantitatively accurate approach for the description of the spectral signatures of electron-boson coupling entirely from first principles, and it has thus become the state-of-the-art theoretical tool for the description of these phenomena. In this chapter we introduce the fundamental concepts needed to interpret plasmon and phonon satellites in photoelectron spectra, and we review recent progress on first-principles calculations of these features using the cumulant expansion method.
171 - A. Ostlin , L. Vitos , L. Chioncel 2017
We present a new charge self-consistent scheme combining Density Functional and Dynamical Mean Field Theory, which uses Greens function of multiple scattering-type. In this implementation the many-body effects are incorporated into the Kohn-Sham iterative scheme without the need for the numerically ill-posed analytic continuation of the Greens function and of the self-energy. This is achieved by producing the Kohn-Sham Hamiltonian in the sub-space of correlated partial waves and allows to formulate the Greens function directly on the Matsubara axis. The spectral moments of the Matsubara Greens function enable us to put together the real space charge density, therefore the charge self-consistency can be achieved. Our results for the spectral functions (density of states) and equation of state curves for transition metal elements, Fe, Ni and FeAl compound agree very well with those of Hamiltonian based LDA+DMFT implementations. The current implementation improves on numerical accuracy, requires a minimal effort besides the multiple scattering formulation and can be generalized in several ways that are interesting for applications to real materials.
This lecture note reviews recently proposed sparse-modeling approaches for efficient ab initio many-body calculations based on the data compression of Greens functions. The sparse-modeling techniques are based on a compact orthogonal basis representation, intermediate representation (IR) basis functions, for imaginary-time and Matsubara Greens functions. A sparse sampling method based on the IR basis enables solving diagrammatic equations efficiently. We describe the basic properties of the IR basis, the sparse sampling method and its applications to ab initio calculations based on the GW approximation and the Migdal-Eliashberg theory. We also describe a numerical library for the IR basis and the sparse sampling method, irbasis, and provide its sample codes. This lecture note follows the Japanese review article [H. Shinaoka et al., Solid State Physics 56(6), 301 (2021)].
Greens function methods within many-body perturbation theory provide a general framework for treating electronic correlations in excited states. Here we investigate the cumulant form of the one-electron Greens function based on the coupled-cluster equation of motion approach in an extension of our previous study. The approach yields a non-perturbative expression for the cumulant in terms of the solution to a set of coupled first order, non-linear differential equations. The method thereby adds non-linear corrections to traditional cumulant methods linear in the self energy. The approach is applied to the core-hole Greens function and illustrated for a number of small molecular systems. For these systems we find that the non-linear contributions lead to significant improvements both for quasiparticle properties such as core-level binding energies, as well as the satellites corresponding to inelastic losses observed in photoemission spectra.
428 - J. J. Kas , J. J. Rehr , 2021
The treatment of electronic correlations in open-shell systems is among the most challenging problems of condensed matter theory. Current approximations are only partly successful. Ligand field multiplet theory (LFMT) has been widely successful in describing intra-atomic correlation effects in x-ray spectra, but typically ignores itinerant states. The cumulant expansion for the one electron Greens function successfully describes shake-up effects but ignores atomic multiplets. More complete methods are computationally problematic. Here we show that separating the dynamic Coulomb interactions into local and longer-range parts yields an efficient, nearly ab initio multiplet + cumulant approach that accounts for both local atomic multiplet-splittings and charge-transfer shake-up satellites. An application to {alpha}-Fe 2 O 3 (hematite) yields very good agreement with XPS experiment, including the broad 9 eV satellites and distributed background features missing from previous approaches.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا