Do you want to publish a course? Click here

SSH: Single Stage Headless Face Detector

171   0   0.0 ( 0 )
 Added by Mahyar Najibi
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

We introduce the Single Stage Headless (SSH) face detector. Unlike two stage proposal-classification detectors, SSH detects faces in a single stage directly from the early convolutional layers in a classification network. SSH is headless. That is, it is able to achieve state-of-the-art results while removing the head of its underlying classification network -- i.e. all fully connected layers in the VGG-16 which contains a large number of parameters. Additionally, instead of relying on an image pyramid to detect faces with various scales, SSH is scale-invariant by design. We simultaneously detect faces with different scales in a single forward pass of the network, but from different layers. These properties make SSH fast and light-weight. Surprisingly, with a headless VGG-16, SSH beats the ResNet-101-based state-of-the-art on the WIDER dataset. Even though, unlike the current state-of-the-art, SSH does not use an image pyramid and is 5X faster. Moreover, if an image pyramid is deployed, our light-weight network achieves state-of-the-art on all subsets of the WIDER dataset, improving the AP by 2.5%. SSH also reaches state-of-the-art results on the FDDB and Pascal-Faces datasets while using a small input size, leading to a runtime of 50 ms/image on a GPU. The code is available at https://github.com/mahyarnajibi/SSH.



rate research

Read More

This work shows that it is possible to fool/attack recent state-of-the-art face detectors which are based on the single-stage networks. Successfully attacking face detectors could be a serious malware vulnerability when deploying a smart surveillance system utilizing face detectors. We show that existing adversarial perturbation methods are not effective to perform such an attack, especially when there are multiple faces in the input image. This is because the adversarial perturbation specifically generated for one face may disrupt the adversarial perturbation for another face. In this paper, we call this problem the Instance Perturbation Interference (IPI) problem. This IPI problem is addressed by studying the relationship between the deep neural network receptive field and the adversarial perturbation. As such, we propose the Localized Instance Perturbation (LIP) that uses adversarial perturbation constrained to the Effective Receptive Field (ERF) of a target to perform the attack. Experiment results show the LIP method massively outperforms existing adversarial perturbation generation methods -- often by a factor of 2 to 10.
We present Self-Ensembling Single-Stage object Detector (SE-SSD) for accurate and efficient 3D object detection in outdoor point clouds. Our key focus is on exploiting both soft and hard targets with our formulated constraints to jointly optimize the model, without introducing extra computation in the inference. Specifically, SE-SSD contains a pair of teacher and student SSDs, in which we design an effective IoU-based matching strategy to filter soft targets from the teacher and formulate a consistency loss to align student predictions with them. Also, to maximize the distilled knowledge for ensembling the teacher, we design a new augmentation scheme to produce shape-aware augmented samples to train the student, aiming to encourage it to infer complete object shapes. Lastly, to better exploit hard targets, we design an ODIoU loss to supervise the student with constraints on the predicted box centers and orientations. Our SE-SSD attains top performance compared with all prior published works. Also, it attains top precisions for car detection in the KITTI benchmark (ranked 1st and 2nd on the BEV and 3D leaderboards, respectively) with an ultra-high inference speed. The code is available at https://github.com/Vegeta2020/SE-SSD.
Existing single-stage detectors for locating objects in point clouds often treat object localization and category classification as separate tasks, so the localization accuracy and classification confidence may not well align. To address this issue, we present a new single-stage detector named the Confident IoU-Aware Single-Stage object Detector (CIA-SSD). First, we design the lightweight Spatial-Semantic Feature Aggregation module to adaptively fuse high-level abstract semantic features and low-level spatial features for accurate predictions of bounding boxes and classification confidence. Also, the predicted confidence is further rectified with our designed IoU-aware confidence rectification module to make the confidence more consistent with the localization accuracy. Based on the rectified confidence, we further formulate the Distance-variant IoU-weighted NMS to obtain smoother regressions and avoid redundant predictions. We experiment CIA-SSD on 3D car detection in the KITTI test set and show that it attains top performance in terms of the official ranking metric (moderate AP 80.28%) and above 32 FPS inference speed, outperforming all prior single-stage detectors. The code is available at https://github.com/Vegeta2020/CIA-SSD.
In this paper, we propose a novel face detection network with three novel contributions that address three key aspects of face detection, including better feature learning, progressive loss design and anchor assign based data augmentation, respectively. First, we propose a Feature Enhance Module (FEM) for enhancing the original feature maps to extend the single shot detector to dual shot detector. Second, we adopt Progressive Anchor Loss (PAL) computed by two different sets of anchors to effectively facilitate the features. Third, we use an Improved Anchor Matching (IAM) by integrating novel anchor assign strategy into data augmentation to provide better initialization for the regressor. Since these techniques are all related to the two-stream design, we name the proposed network as Dual Shot Face Detector (DSFD). Extensive experiments on popular benchmarks, WIDER FACE and FDDB, demonstrate the superiority of DSFD over the state-of-the-art face detectors.
87 - Jiale Li , Hang Dai , Ling Shao 2021
Most of the existing single-stage and two-stage 3D object detectors are anchor-based methods, while the efficient but challenging anchor-free single-stage 3D object detection is not well investigated. Recent studies on 2D object detection show that the anchor-free methods also are of great potential. However, the unordered and sparse properties of point clouds prevent us from directly leveraging the advanced 2D methods on 3D point clouds. We overcome this by converting the voxel-based sparse 3D feature volumes into the sparse 2D feature maps. We propose an attentive module to fit the sparse feature maps to dense mostly on the object regions through the deformable convolution tower and the supervised mask-guided attention. By directly regressing the 3D bounding box from the enhanced and dense feature maps, we construct a novel single-stage 3D detector for point clouds in an anchor-free manner. We propose an IoU-based detection confidence re-calibration scheme to improve the correlation between the detection confidence score and the accuracy of the bounding box regression. Our code is publicly available at url{https://github.com/jialeli1/MGAF-3DSSD}.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا