We prove existence of large families of solutions of Einstein-complex scalar field equations with a negative cosmological constant, with a stationary or static metric and a time-periodic complex scalar field.
We construct infinite-dimensional families of non-singular static space times, solutions of the vacuum Einstein-Maxwell equations with a negative cosmological constant. The families include an infinite-dimensional family of solutions with the usual AdS conformal structure at conformal infinity.
In this paper, we construct a class of collapsing spacetimes in vacuum without any symmetries. The spacetime contains a black hole region which is bounded from the past by the future event horizon. It possesses a Cauchy hypersurface with trivial topology which is located outside the black hole region. Based on existing techniques in the literature, the spacetime can in principle be constructed to be past geodesically complete and asymptotic to Minkowski space. The construction is based on a semi-global existence result of the vacuum Einstein equations built on a modified version of the a priori estimates that were originally established by Christodoulou in his work on the formation of trapped surface, and a gluing construction carried out inside the black hole. In particular, the full detail of the a priori estimates needed for the existence is provided, which can be regarded as a simplification of Christodoulous original argument.
We study dynamics of non-minimally coupled scalar field cosmological models with Higgs-like potentials and a negative cosmological constant. In these models the inflationary stage of the Universe evolution changes into a quasi-cyclic stage of the Universe evolution with oscillation behaviour of the Hubble parameter from positive to negative values. Depending on the initial conditions the Hubble parameter can perform either one or several cycles before to become negative forever.
In recent literature there appeared conflicting claims about whether the Ozsvath-Robinson-Rozga family of type N electrovac spacetimes of the Kundt class with $Lambda$ is complete. We show that indeed it is.
In the functional Schrodinger formalism, we obtain the wave function describing collapsing dust in an anti-de Sitter background, as seen by a co-moving observer, by mapping the resulting variable mass Schrodinger equation to that of the quantum isotonic oscillator. Using this wave function, we perform a causal de Broglie-Bohm analysis, and obtain the corresponding quantum potential. We construct a bouncing geometry via a disformal transformation, incorporating quantum effects. We derive the external solution that matches with this smoothly, and is also quantum corrected. Due to a pressure term originating from the quantum potential, an initially collapsing solution with a negative cosmological constant bounces back after reaching a minimum radius, and thereby avoids the classical singularity predicted by general relativity.
Piotr T. Chrusciel
,Erwann Delay
,Paul Klinger
.
(2017)
.
"Non-singular spacetimes with a negative cosmological constant: V. Boson stars"
.
Paul Klinger
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا