No Arabic abstract
Conjugate metamaterials, in which the permittivity and the permeability are complex conjugates of each other, possess the elements of loss and gain simultaneously. By employing a conjugate metamaterial with a purely imaginary form, we propose a mechanism for realizing both coherent perfect absorber (CPA) and laser modes, which have been widely investigated in parity-time symmetric systems. Moreover, the general conditions for obtaining CPA and laser modes, including obtaining them simultaneously, are revealed by analyzing the wave scattering properties of a slab made of purely imaginary conjugate metamaterials. Specifically, in a purely imaginary conjugate metamaterial slab with a sub-unity effective refractive index, perfect absorption can be realized for the incident wave from air.
By introducing a new mechanism based on purely imaginary conjugate metamaterials (PICMs), we reveal that bidirectional negative refraction and planar focusing can be obtained using a pair of PICMs, which is a breakthrough to the unidirectional limit in parity time (PT) symmetric systems. Compared with PT symmetric systems that require two different kinds of materials, the proposed negative refraction can be realized with only two identical media. In addition, asymmetric excitation with bidirectional total transmission is observed in our PICM system. Therefore, a new way to realize negative refraction is presented, with more properties than those in PT symmetric systems.
In this work, we theoretically find that coherent perfect absorption (CPA) and laser modes can be realized in a two-dimensional cylindrical structure composed of conjugate metamaterials (CMs). The required phase factors of CMs for achieving CPA and laser modes are determined by the geometric size of the CM cylinder, which is a unique feature compared with other non-Hermitian optical systems. Based on this property, we also demonstrate that CPA and laser modes can exist simultaneously in a CM cylinder with an extremely large size, where the excitations of CPA and laser modes depend on the angular momentum of coherent incident light. Therefore, compared with the well known parity time symmetry, our work opens up a brand-new path to obtaining CPA and laser modes, and is a significant advance in non-Hermitian optical systems.
An infrared perfect absorber based on gold nanowire metamaterial cavities array on a gold ground plane is designed. The metamaterial made of gold nanowires embedded in alumina host exhibits an effective permittivity with strong anisotropy, which supports cavity resonant modes of both electric dipole and magnetic dipole. The impedance of the cavity modes matches the incident plane wave in free space, leading to nearly perfect light absorption. The incident optical energy is efficiently converted into heat so that the local temperature of the absorber will increase. Simulation results show that the designed metamaterial absorber is polarization-insensitive and nearly omnidirectional for the incident angle.
Designing broadband metamaterial perfect absorbers is challenging due to the intrinsically narrow bandwidth of surface plasmon resonances. Here, the paper reports an ultra-broadband metamaterial absorber by using space filling Gosper curve. The optimized result shows an average absorptivity of 95.78% from 2.64 to 9.79 {mu}m across the entire mid-infrared region. Meanwhile, the absorber shows insensitivity to the polarization angle and the incident angle of the incident light. The underlying physical principles, used in our broadband absorber, involve a fractal geometry with multiple scales and a dissipative plasmonic crystal. The broadband perfect absorption can be attributed to multiple electric resonances at different wavelengths supported by a few segments in the defined Gosper curve.
We propose a tunable coherent perfect absorber based on ultrathin nonlinear metasurfaces. The nonlinear metasurface is made of plasmonic nanoantennas coupled to an epsilon-near-zero material with a large optical nonlinearity. The coherent perfect absorption is achieved by controlling the relative phases of the input beams. We show that the optical response of the nonlinear metasurface can be tuned from a complete to a partial absorption by changing the intensity of the pump beam. The proposed nonlinear metasurface can be used to design optically tunable thermal emitters, modulators, and sensors.