Do you want to publish a course? Click here

Targeting and Signaling in Ad Auctions

123   0   0.0 ( 0 )
 Added by Haifeng Xu
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Modern ad auctions allow advertisers to target more specific segments of the user population. Unfortunately, this is not always in the best interest of the ad platform. In this paper, we examine the following basic question in the context of second-price ad auctions: how should an ad platform optimally reveal information about the ad opportunity to the advertisers in order to maximize revenue? We consider a model in which bidders valuations depend on a random state of the ad opportunity. Different from previous work, we focus on a more practical, and challenging, situation where the space of possible realizations of ad opportunities is extremely large. We thus focus on developing algorithms whose running time is independent of the number of ad opportunity realizations. We examine the auctioneers algorithmic question of designing the optimal signaling scheme. When the auctioneer is restricted to send a public signal to all bidders, we focus on a well-motivated Bayesian valuation setting in which the auctioneer and bidders both have private information, and present two main results: 1. we exhibit a characterization result regarding approximately optimal schemes and prove that any constant-approximate public signaling scheme must use exponentially many signals; 2. we present a simple public signaling scheme that serves as a constant approximation under mild assumptions. We then initiate an exploration on the power of being able to send different signals privately to different bidders. Here we examine a basic setting where the auctioneer knows bidders valuations, and exhibit a polynomial-time private scheme that extracts almost full surplus even in the worst Bayes Nash equilibrium. This illustrates the surprising power of private signaling schemes in extracting revenue.



rate research

Read More

This paper studies equilibrium quality of semi-separable position auctions (known as the Ad Types setting) with greedy or optimal allocation combined with generalized second-price (GSP) or Vickrey-Clarke-Groves (VCG) pricing. We make three contributions: first, we give upper and lower bounds on the Price of Anarchy (PoA) for auctions which use greedy allocation with GSP pricing, greedy allocations with VCG pricing, and optimal allocation with GSP pricing. Second, we give Bayes-Nash equilibrium characterizations for two-player, two-slot instances (for all auction formats) and show that there exists both a revenue hierarchy and revenue equivalence across some formats. Finally, we use no-regret learning algorithms and bidding data from a large online advertising platform and no-regret learning algorithms to evaluate the performance of the mechanisms under semi-realistic conditions. For welfare, we find that the optimal-to-realized welfare ratio (an empirical PoA analogue) is broadly better than our upper bounds on PoA; For revenue, we find that the hierarchy in practice may sometimes agree with simple theory, but generally appears sensitive to the underlying distribution of bidder valuations.
In this paper we investigate the problem of measuring end-to-end Incentive Compatibility (IC) regret given black-box access to an auction mechanism. Our goal is to 1) compute an estimate for IC regret in an auction, 2) provide a measure of certainty around the estimate of IC regret, and 3) minimize the time it takes to arrive at an accurate estimate. We consider two main problems, with different informational assumptions: In the emph{advertiser problem} the goal is to measure IC regret for some known valuation $v$, while in the more general emph{demand-side platform (DSP) problem} we wish to determine the worst-case IC regret over all possible valuations. The problems are naturally phrased in an online learning model and we design $Regret-UCB$ algorithms for both problems. We give an online learning algorithm where for the advertiser problem the error of determining IC shrinks as $OBig(frac{|B|}{T}cdotBig(frac{ln T}{n} + sqrt{frac{ln T}{n}}Big)Big)$ (where $B$ is the finite set of bids, $T$ is the number of time steps, and $n$ is number of auctions per time step), and for the DSP problem it shrinks as $OBig(frac{|B|}{T}cdotBig( frac{|B|ln T}{n} + sqrt{frac{|B|ln T}{n}}Big)Big)$. For the DSP problem, we also consider stronger IC regret estimation and extend our $Regret-UCB$ algorithm to achieve better IC regret error. We validate the theoretical results using simulations with Generalized Second Price (GSP) auctions, which are known to not be incentive compatible and thus have strictly positive IC regret.
The market economy deals with many interacting agents such as buyers and sellers who are autonomous intelligent agents pursuing their own interests. One such multi-agent system (MAS) that plays an important role in auctions is the combinatorial auctioning system (CAS). We use this framework to define our concept of fairness in terms of what we call as basic fairness and extended fairness. The assumptions of quasilinear preferences and dominant strategies are taken into consideration while explaining fairness. We give an algorithm to ensure fairness in a CAS using a Generalized Vickrey Auction (GVA). We use an algorithm of Sandholm to achieve optimality. Basic and extended fairness are then analyzed according to the dominant strategy solution concept.
We study single-good auctions in a setting where each player knows his own valuation only within a constant multiplicative factor delta{} in (0,1), and the mechanism designer knows delta. The classical notions of implementation in dominant strategies and implementation in undominated strategies are naturally extended to this setting, but their power is vastly different. On the negative side, we prove that no dominant-strategy mechanism can guarantee social welfare that is significantly better than that achievable by assigning the good to a random player. On the positive side, we provide tight upper and lower bounds for the fraction of the maximum social welfare achievable in undominated strategies, whether deterministically or probabilistically.
Strategic interactions often take place in an environment rife with uncertainty. As a result, the equilibrium of a game is intimately related to the information available to its players. The emph{signaling problem} abstracts the task faced by an informed market maker, who must choose how to reveal information in order to effect a desirable equilibrium. In this paper, we consider two fundamental signaling problems: one for abstract normal form games, and the other for single item auctions. For the former, we consider an abstract class of objective functions which includes the social welfare and weighted combinations of players utilities, and for the latter we restrict our attention to the social welfare objective and to signaling schemes which are constrained in the number of signals used. For both problems, we design approximation algorithms for the signaling problem which run in quasi-polynomial time under various conditions, extending and complementing the results of various recent works on the topic. Underlying each of our results is a meshing scheme which effectively overcomes the curse of dimensionality and discretizes the space of essentially different posterior beliefs -- in the sense of inducing essentially different equilibria. This is combined with an algorithm for optimally assembling a signaling scheme as a convex combination of such beliefs. For the normal form game setting, the meshing scheme leads to a convex partition of the space of posterior beliefs and this assembly procedure is reduced to a linear program, and in the auction setting the assembly procedure is reduced to submodular function maximization.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا