Wave breaking for the Stochastic Camassa-Holm equation


Abstract in English

We show that wave breaking occurs with positive probability for the Stochastic Camassa-Holm (SCH) equation. This means that temporal stochasticity in the diffeomorphic flow map for SCH does not prevent the wave breaking process which leads to the formation of peakon solutions. We conjecture that the time-asymptotic solutions of SCH will consist of emergent wave trains of peakons moving along stochastic space-time paths.

Download