No Arabic abstract
In theories with the large extra dimensions beyond the standard 4-dimensional spacetime, axions could propagate in such extra dimensions, and acquire Kaluza-Klein (KK) excitations. These KK axions are produced in the Sun and could solve unexplained heating of the solar corona. While most of the solar KK axions escape from the solar system, a small fraction is gravitationally trapped in orbits around the Sun. They would decay into two photons inside a terrestrial detector. The event rate is expected to modulate annually depending on the distance from the Sun. We have searched for the annual modulation signature using $832times 359$ kg$cdot$days of XMASS-I data. No significant event rate modulation is found, and hence we set the first experimental constraint on the KK axion-photon coupling of $4.8 times 10^{-12}, mathrm{GeV}^{-1}$ at 90% confidence level for a KK axion number density of $bar{n}_mathrm{a} = 4.07 times 10^{13}, mathrm{m}^{-3}$, the total number of extra dimensions $n = 2$, and the number of extra dimensions $delta = 2$ that axions can propagate in.
Kaluza-Klein (KK) axions appear in theories with extra dimensions as higher mass, significantly shorter lifetime, excitations of the Peccei-Quinn axion. When produced in the Sun, they would remain gravitationally trapped in the solar system, and their decay to a pair of photons could provide an explanation of the solar corona heating problem. A low-density detector would discriminate such a signal from the background, by identifying the separation of the interaction point of the two photons. The NEWS-G collaboration uses large volume Spherical Proportional Counters, gas-filled metallic spheres with a spherical anode in their centre. After observation of a single axion-like event in a 42 day long run with the SEDINE detector, a $90%$ C.L. upper limit of $g_{agammagamma}<7.76cdot10^{-13},GeV^{-1}$ is set on the axion-photon coupling for a KK axion density on Earth of $n_{a}=4.07cdot10^{13},m^{-3}$ and two extra dimensions of size $R = 1,eV^{-1}$.
A search for dark matter (DM) with mass in the sub-GeV region (0.32-1 GeV) was conducted by looking for an annual modulation signal in XMASS, a single-phase liquid xenon detector. Inelastic nuclear scattering accompanied by bremsstrahlung emission was used to search down to an electron equivalent energy of 1 keV. The data used had a live time of 2.8 years (3.5 years in calendar time), resulting in a total exposure of 2.38 ton-years. No significant modulation signal was observed and 90% confidence level upper limits of $1.6 times 10^{-33}$ cm$^2$ at 0.5 GeV was set for the DM-nucleon cross section. This is the first experimental result of a search for DM mediated by the bremsstrahlung effect. In addition, a search for DM with mass in the multi-GeV region (4-20 GeV) was conducted with a lower energy threshold than previous analysis of XMASS. Elastic nuclear scattering was used to search down to a nuclear recoil equivalent energy of 2.3 keV, and upper limits of 2.9 $times$10$^{-42}$ cm$^2$ at 8 GeV was obtained.
A search for dark matter was conducted by looking for an annual modulation signal due to the Earths rotation around the Sun using XMASS, a single phase liquid xenon detector. The data used for this analysis was 359.2 live days times 832 kg of exposure accumulated between November 2013 and March 2015. When we assume Weakly Interacting Massive Particle (WIMP) dark matter elastically scattering on the target nuclei, the exclusion upper limit of the WIMP-nucleon cross section 4.3$times$10$^{-41}$cm$^2$ at 8 GeV/c$^2$ was obtained and we exclude almost all the DAMA/LIBRA allowed region in the 6 to 16 GeV/c$^2$ range at $sim$10$^{-40}$cm$^2$. The result of a simple modulation analysis, without assuming any specific dark matter model but including electron/$gamma$ events, showed a slight negative amplitude. The $p$-values obtained with two independent analyses are 0.014 and 0.068 for null hypothesis, respectively. we obtained 90% C.L. upper bounds that can be used to test various models. This is the first extensive annual modulation search probing this region with an exposure comparable to DAMA/LIBRA.
An annual modulation signal due to the Earth orbiting around the Sun would be one of the strongest indications of the direct detection of dark matter. In 2016, we reported a search for dark matter by looking for this annual modulation with our single-phase liquid xenon XMASS-I detector. That analysis resulted in a slightly negative modulation amplitude at low energy. In this work, we included more than one year of additional data, which more than doubles the exposure to 800 live days with the same 832 kg target mass. When we assume weakly interacting massive particle (WIMP) dark matter elastically scattering on the xenon target, the exclusion upper limit for the WIMP-nucleon cross section was improved by a factor of 2 to 1.9$times$10$^{-41}$cm$^2$ at 8 GeV/c$^2$ at 90% confidence level with our newly implemented data selection through a likelihood method. For the model-independent case, without assuming any specific dark matter model, we obtained more consistency with the null hypothesis than before with a $p$-value of 0.11 in the 1$-$20 keV energy region. This search probed this region with an exposure that was larger than that of DAMA/LIBRA. We also did not find any significant amplitude in the data for periodicity with periods between 50 and 600 days in the energy region between 1 to 6 keV.
We have searched for exotic neutrino-electron interactions that could be produced by a neutrino millicharge, by a neutrino magnetic moment, or by dark photons using solar neutrinos in the XMASS-I liquid xenon detector. We observed no significant signals in 711 days of data. We obtain an upper limit for neutrino millicharge of 5.4$times$10$^{-12} e$ at 90% confidence level assuming all three species of neutrino have common millicharge. We also set flavor dependent limits assuming the respective neutrino flavor is the only one carrying a millicharge, $7.3 times 10^{-12} e$ for $ u_e$, $1.1 times 10^{-11} e$ for $ u_{mu}$, and $1.1 times 10^{-11} e$ for $ u_{tau}$. These limits are the most stringent yet obtained from direct measurements. We also obtain an upper limit for the neutrino magnetic moment of 1.8$times$10$^{-10}$ Bohr magnetons. In addition, we obtain upper limits for the coupling constant of dark photons in the $U(1)_{B-L}$ model of 1.3$times$10$^{-6}$ if the dark photon mass is 1$times 10^{-3}$ MeV$/c^{2}$, and 8.8$times$10$^{-5}$ if it is 10 MeV$/c^{2}$.