Do you want to publish a course? Click here

A New Asymptotic Analysis Technique for Diversity Receptions Over Correlated Lognormal Fading Channels

69   0   0.0 ( 0 )
 Added by Bingcheng Zhu
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Prior asymptotic performance analyses are based on the series expansion of the moment-generating function (MGF) or the probability density function (PDF) of channel coefficients. However, these techniques fail for lognormal fading channels because the Taylor series of the PDF of a lognormal random variable is zero at the origin and the MGF does not have an explicit form. Although lognormal fading model has been widely applied in wireless communications and free-space optical communications, few analytical tools are available to provide elegant performance expressions for correlated lognormal channels. In this work, we propose a novel framework to analyze the asymptotic outage probabilities of selection combining (SC), equal-gain combining (EGC) and maximum-ratio combining (MRC) over equally correlated lognormal fading channels. Based on these closed-form results, we reveal the followings: i) the outage probability of EGC or MRC becomes an infinitely small quantity compared to that of SC at large signal-to-noise ratio (SNR); ii) channel correlation can result in an infinite performance loss at large SNR. More importantly, the analyses reveal insights into the long-standing problem of performance analyses over correlated lognormal channels at high SNR, and circumvent the time-consuming Monte Carlo simulation and numerical integration.



rate research

Read More

In this paper, outage performance of hybrid automatic repeat request with incremental redundancy (HARQ-IR) is analyzed. Unlike prior analyses, time-correlated Nakagami-$m$ fading channel is considered. The outage analysis thus involves the probability distribution analysis of a product of multiple correlated shifted Gamma random variables and is more challenging than prior analyses. Based on the finding of the conditional independence of the received signal-to-noise ratios (SNRs), the outage probability is exactly derived by using conditional Mellin transform. Specifically, the outage probability of HARQ-IR under time-correlated Nakagami-$m$ fading channels can be written as a weighted sum of outage probabilities of HARQ-IR over independent Nakagami fading channels, where the weightings are determined by a negative multinomial distribution. This result enables not only an efficient truncation approximation of the outage probability with uniform convergence but also asymptotic outage analysis to further extract clear insights which have never been discovered for HARQ-IR even under fast fading channels. The asymptotic outage probability is then derived in a simple form which clearly quantifies the impacts of transmit powers, channel time correlation and information transmission rate. It is proved that the asymptotic outage probability is an inverse power function of the product of transmission powers in all HARQ rounds, an increasing function of the channel time correlation coefficients, and a monotonically increasing and convex function of information transmission rate. The simple expression of the asymptotic result enables optimal power allocation and optimal rate selection of HARQ-IR with low complexity. Finally, numerical results are provided to verify our analytical results and justify the application of the asymptotic result for optimal system design.
The present paper is devoted to the evaluation of energy detection based spectrum sensing over different multipath fading and shadowing conditions. This is realized by means of a unified and versatile approach that is based on the particularly flexible mixture gamma distribution. To this end, novel analytic expressions are firstly derived for the probability of detection over MG fading channels for the conventional single-channel communication scenario. These expressions are subsequently employed in deriving closed-form expressions for the case of square-law combining and square-law selection diversity methods. The validity of the offered expressions is verified through comparisons with results from respective computer simulations. Furthermore, they are employed in analyzing the performance of energy detection over multipath fading, shadowing and composite fading conditions, which provides useful insighs on the performance and design of future cognitive radio based communication systems.
The fading wire-tap channel is investigated, where the source-to-destination channel and the source-to-wire-tapper channel are corrupted by multiplicative fading gain coefficients in addition to additive Gaussian noise terms. The channel state information is assumed to be known at both the transmitter and the receiver. The parallel wire-tap channel with independent subchannels is first studied, which serves as an information-theoretic model for the fading wire-tap channel. The secrecy capacity of the parallel wire-tap channel is established. This result is then specialized to give the secrecy capacity of the fading wire-tap channel, which is achieved with the source node dynamically changing the power allocation according to the channel state realization. An optimal source power allocation is obtained to achieve the secrecy capacity.
Free space optical (FSO) communication has been receiving increasing attention in recent years with its ability to achieve ultra-high data rates over unlicensed optical spectrum. A major performance limiting factor in FSO systems is atmospheric turbulence which severely degrades the system performance. To address this issue, multiple transmit and/or receive apertures can be employed, and the performance can be improved via diversity gain. In this paper, we investigate the bit error rate (BER) performance of FSO systems with transmit diversity or receive diversity with equal gain combining (EGC) over atmospheric turbulence channels described by the Double Generalized Gamma (Double GG) distribution. The Double GG distribution, recently proposed, generalizes many existing turbulence models in a closed-form expression and covers all turbulence conditions. Since the distribution function of a sum of Double GG random variables (RVs) appears in BER expression, we first derive a closed-form upper bound for the distribution of the sum of Double GG distributed RVs. A novel union upper bound for the average BER as well as corresponding asymptotic expression is then derived and evaluated in terms of Meijers G-functions.
The outage performance of multiple-input multiple-output (MIMO) technique has received intense attention in order to ensure the reliability requirement for mission-critical machine-type communication (cMTC) applications. In this paper, the outage probability is asymptotically studied for MIMO channels to thoroughly investigate the transmission reliability. To fully capture the spatial correlation effects, the MIMO fading channel matrix is modelled according to three types of Kronecker correlation structure, i.e., independent, semi-correlated and full-correlated Rayleigh MIMO channels. The outage probabilities under all three Kronecker models are expressed as representations of the weighted sum of the generalized Foxs H functions. The simple analytical results empower the asymptotic outage analyses at high signal-to-noise ratio (SNR), which are conducted not only to reveal helpful insights into understanding the behavior of fading effects, but also to offer useful design guideline for MIMO configurations. Particularly, the asymptotic outage probability is proved to be a monotonically increasing and convex function of the transmission rate. In the absence of the channel state information (CSI), the transmitter tends to equally allocate the total transmit power among its antennas to enhance the system reliability especially in high SNR regime. In the end, the analytical results are validated through extensive numerical experiments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا