Suspension-thermal noise in spring-antispring systems for future gravitational-wave detectors


Abstract in English

Spring-antispring systems have been investigated as possible low-frequency seismic isolation in high-precision optical experiments. These systems provide the possibility to tune the fundamental resonance frequency to, in principle, arbitrarily low values, and at the same time maintain a compact design of the isolation system. It was argued though that thermal noise in spring-antispring systems would not be as small as one may naively expect from lowering the fundamental resonance frequency. In this paper, we present a detailed calculation of the suspension thermal noise for a specific spring-antispring system, namely the Roberts linkage. We find a concise expression of the suspension thermal noise spectrum, which assumes a form very similar to the well-known expression for a simple pendulum. It is found that while the Roberts linkage can provide strong seismic isolation due to a very low fundamental resonance frequency, its thermal noise is rather determined by the dimension of the system. We argue that this is true for all horizontal mechanical isolation systems with spring-antispring dynamics. This imposes strict requirements on mechanical spring-antispring systems for the seismic isolation in potential future low-frequency gravitational-wave detectors as we discuss for the four main concepts: atom-interferometric, superconducting, torsion-bars, and conventional laser interferometer.

Download