No Arabic abstract
Pure Yang-Mills amplitudes with all external gluons carrying positive helicity, known as all-plus amplitudes, have an especially simple structure. The tree amplitudes vanish and, up to at least two loops, the loop-level amplitudes are related to those of $mathcal{N}=4$ super-Yang-Mills (SYM) theory. This makes all-plus amplitudes a useful testing ground for new methods of simplifying more general classes of amplitudes. In this thesis we consider three new approaches, focusing on the structure before integration.
We express the planar five- and six-gluon two-loop Yang-Mills amplitudes with all positive helicities in compact analytic form using D-dimensional local integrands that are free of spurious singularities. The integrand is fixed from on-shell tree amplitudes in six dimensions using D-dimensional generalised unitarity cuts. The resulting expressions are shown to have manifest infrared behaviour at the integrand level. We also find simple representations of the rational terms obtained after integration in 4-2epsilon dimensions.
All four-point mixed gluon-graviton amplitudes in pure Einstein-Yang-Mills theory with at most one state of negative helicity are computed at one-loop order and maximal powers of the gauge coupling using D-dimensional generalized unitarity. The resulting purely rational expressions take very compact forms. We comment on the color-kinematics duality picture and a relation to collinear limits of pure gluon amplitudes.
We present an ansatz for the planar five-loop four-point amplitude in maximally supersymmetric Yang-Mills theory in terms of loop integrals. This ansatz exploits the recently observed correspondence between integrals with simple conformal properties and those found in the four-point amplitudes of the theory through four loops. We explain how to identify all such integrals systematically. We make use of generalized unitarity in both four and D dimensions to determine the coefficients of each of these integrals in the amplitude. Maximal cuts, in which we cut all propagators of a given integral, are an especially effective means for determining these coefficients. The set of integrals and coefficients determined here will be useful for computing the five-loop cusp anomalous dimension of the theory which is of interest for non-trivial checks of the AdS/CFT duality conjecture. It will also be useful for checking a conjecture that the amplitudes have an iterative structure allowing for their all-loop resummation, whose link to a recent string-side computation by Alday and Maldacena opens a new venue for quantitative AdS/CFT comparisons.
We compute the six-particle maximally-helicity-violating (MHV) and next-to-MHV (NMHV) amplitudes in planar maximally supersymmetric Yang-Mills theory through seven loops and six loops, respectively, as an application of the extended Steinmann relations and using the cosmic Galois coaction principle. Starting from a minimal space of functions constructed using these principles, we identify the amplitude by matching its symmetries and predicted behavior in various kinematic limits. Through five loops, the MHV and NMHV amplitudes are uniquely determined using only the multi-Regge and leading collinear limits. Beyond five loops, the MHV amplitude requires additional data from the kinematic expansion around the collinear limit, which we obtain from the Pentagon Operator Product Expansion, and in particular from its single-gluon bound state contribution. We study the MHV amplitude in the self-crossing limit, where its singular terms agree with previous predictions. Analyzing and plotting the amplitudes along various kinematical lines, we continue to find remarkable stability between loop orders.
We argue that the scattering amplitudes in the maximally supersymmetric N=4 super-Yang-Mills theory possess a new symmetry which extends the previously discovered dual conformal symmetry. To reveal this property we formulate the scattering amplitudes as functions in the appropriate dual superspace. Rewritten in this form, all tree-level MHV and next-to-MHV amplitudes exhibit manifest dual superconformal symmetry. We propose a new, compact and Lorentz covariant formula for the tree-level NMHV amplitudes for arbitrary numbers and types of external particles. The dual conformal symmetry is broken at loop level by infrared divergences. However, we provide evidence that the anomalous contribution to the MHV and NMHV superamplitudes is the same and, therefore, their ratio is a dual conformal invariant function. We identify this function by an explicit calculation of the six-particle amplitudes at one loop. We conjecture that these properties hold for all, MHV and non-MHV, superamplitudes in N=4 SYM both at weak and at strong coupling.