No Arabic abstract
We consider freeze-in production of 7 keV axino dark matter (DM) in the supersymmetric Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) model in light of the 3.5 keV line excess. The warmness of such 7 keV DM produced from the thermal bath, in general, appears in tension with Ly-$alpha$ forest data, although a direct comparison is not straightforward. This is because the Ly-$alpha$ forest constraints are usually reported on the mass of the conventional warm dark matter (WDM), where large entropy production is implicitly assumed to occur in the thermal bath after WDM particles decouple. The phase space distribution of freeze-in axino DM varies depending on production processes and axino DM may alleviate the tension with the tight Ly-$alpha$ forest constraints. By solving the Boltzmann equation, we first obtain the resultant phase space distribution of axinos produced by 2-body decay, 3-body decay, and 2-to-2 scattering, respectively. The reduced collision term and resultant phase space distribution are useful for studying other freeze-in scenarios as well. We then calculate the resultant linear matter power spectra for such axino DM and directly compare them with the linear matter power spectra for the conventional WDM. In order to demonstrate realistic axino DM production, we consider benchmark points with the Higgsino next-to-lightest supersymmetric particle (NLSP) and wino NLSP. In the case of the Higgsino NLSP, the phase space distribution of axinos is colder than that in the conventional WDM case, so the most stringent Ly-$alpha$ forest constraint can be evaded with mild entropy production from saxion decay inherent in the supersymmetric DFSZ axion model.
We point out that 7 keV axino dark matter (DM) in the R-parity violating (RPV) supersymmetric (SUSY) Dine-Fischler-Srednicki-Zhitnitsky model can simultaneously reproduce the 3.5keV X-ray excess, and evade stringent constraints from the Ly-alpha forest data. Peccei-Quinn symmetry breaking naturally generates both axino interactions with minimal SUSY standard model particles and RPV interactions. The RPV interaction introduces an axino-neutrino mixing and provides axino DM as a variant of sterile neutrino DM, whose decay into a monochromatic photon can be detected by X-ray observations. Axinos, on the other hand, are produced by freeze-in processes of thermal particles in addition to the Dodelson-Widrow mechanism of sterile neutrinos. The resultant phase space distribution tends to be colder than the Fermi-Dirac distribution. The inherent entropy production from late-time saxion decay makes axinos even colder. The linear matter power spectrum satisfies even the latest and strongest constraints from the Ly-alpha forest data.
Detecting HI using redshifted Ly-alpha absorption lines is 1e6 times more sensitive than using the 21cm emission line. We review recent discoveries of HI Ly-alpha absorbers made with the Hubble Space Telescope (HST) which have allowed us a first glimpse at gas in local intergalactic space between us and the ``Great Wall. Despite its mere 2.4m aperture, HST can detect absorbers with column densities as low as those found using Keck at high-z (log N(HI)=12.5 1/cm**2). New results that will be discussed include: the evolution of absorbers with redshift, the location of absorbers relative to galaxies (including the two-point correlation function for absorbers), the metallicity of absorbers far from galaxies, and the discovery of hot 1e5-1e6 K (shock-heated?) absorbers. The unique ability of VLA HI observations in discovering the nearest galaxies to these absorbers is stressed.
Mapping of the large-scale structure through cosmic time has numerous applications in the studies of cosmology and galaxy evolution. At $z > 2$, the structure can be traced by the neutral intergalactic medium (IGM) by way of observing the Ly$alpha$, forest towards densely-sampled lines-of-sight of bright background sources, such as quasars and star forming galaxies. We investigate the scientific potential of MOSAIC, a planned multi-object spectrograph on the European Extremely Large Telescope (ELT), for the 3D mapping of the IGM at $z gtrsim 3$. We simulate a survey of $3 lesssim z lesssim 4$ galaxies down to a limiting magnitude of $m_{r}sim 25.5$ mag in an area of 1 degree$^2$ in the sky. Galaxies and their spectra (including the line-of-sight Ly$alpha$ absorption) are taken from the lightcone extracted from the Horizon-AGN cosmological hydrodynamical simulation. The quality of the reconstruction of the original density field is studied for different spectral resolutions and signal-to-noise ratios of the spectra. We demonstrate that the minimum $S/N$ (per resolution element) of the faintest galaxies that such survey has to reach is $S/N = 4$. We show that a survey with such sensitivity enables a robust extraction of cosmic filaments and the detection of the theoretically-predicted galaxy stellar mass and star-formation rate gradients towards filaments. By simulating the realistic performance of MOSAIC we obtain $S/N(T_{rm obs}, R, m_{r})$ scaling relations. We estimate that $lesssim 35~(65)$ nights of observation time are required to carry out the survey with the instruments high multiplex mode and with the spectral resolution of $R=1000~(2000)$. A survey with a MOSAIC-concept instrument on the ELT is found to enable the mapping of the IGM at $z > 3$ on Mpc scales, and as such will be complementary to and competitive with other planned IGM tomography surveys. [abridged]
Non-thermalized dark matter is a cosmologically valid alternative to the paradigm of weakly interacting massive particles. For dark matter belonging to a $Z_2$-odd sector that contains in addition a thermalized mediator particle, dark matter production proceeds in general via both the freeze-in and superWIMP mechanism. We highlight their interplay and emphasize the connection to long-lived particles at colliders. For the explicit example of a colored t-channel mediator model we map out the entire accessible parameter space, cornered by bounds from the LHC, big bang nucleosynthesis and Lyman-alpha forest observations, respectively. We discuss prospects for the HL- and HE-LHC.
The Ly$alpha$ forest transmission probability distribution function (PDF) is an established probe of the intergalactic medium (IGM) astrophysics, especially the temperature-density relationship of the IGM. We measure the transmission PDF from 3393 Baryon Oscillations Spectroscopic Survey (BOSS) quasars from SDSS Data Release 9, and compare with mock spectra that include careful modeling of the noise, continuum, and astrophysical uncertainties. The BOSS transmission PDFs, measured at $langle z rangle = [2.3,2.6,3.0]$, are compared with PDFs created from mock spectra drawn from a suite of hydrodynamical simulations that sample the IGM temperature-density relationship, $gamma$, and temperature at mean-density, $T_0$, where $T(Delta) = T_0 Delta^{gamma-1}$. We find that a significant population of partial Lyman-limit systems with a column-density distribution slope of $beta_mathrm{pLLS} sim -2$ are required to explain the data at the low-transmission end of transmission PDF, while uncertainties in the mean Ly$alpha$ forest transmission affect the high-transmission end. After modelling the LLSs and marginalizing over mean-transmission uncertainties, we find that $gamma=1.6$ best describes the data over our entire redshift range, although constraints on $T_0$ are affected by systematic uncertainties. Within our model framework, isothermal or inverted temperature-density relationships ($gamma leq 1$) are disfavored at a significance of over 4$sigma$, although this could be somewhat weakened by cosmological and astrophysical uncertainties that we did not model.