No Arabic abstract
The surface current on the plasma-vacuum interface during a disruption event involving kink instability can play an important role in driving current into the vacuum vessel. However, there have been disagreements over the nature or even the sign of the surface current in recent theoretical calculations based on idealized step-function background plasma profiles. We revisit such calculations by replacing step-function profiles with more realistic profiles characterized by strong but finite gradient along the radial direction. It is shown that the resulting surface current is no longer a delta-function current density, but a finite and smooth current density profile with internal structure, concentrated within the region with strong plasma pressure gradient. Moreover, this current density profile has peaks of both signs, unlike the delta-function case with a sign opposite to, or the same as the plasma current. We show analytically and numerically that such current density can be separated into two parts, with one of them, called the convective current density, describing the transport of the background plasma density by the displacement, and the other part that remains, called the residual current density. It is argued that consideration of both types of current density is important and can resolve past controversies.
Nonlinear gyrokinetic simulations have been conducted to investigate turbulent transport in tokamak plasmas with rotational shear. At sufficiently large flow shears, linear instabilities are suppressed, but transiently growing modes drive subcritical turbulence whose amplitude increases with flow shear. This leads to a local minimum in the heat flux, indicating an optimal E x B shear value for plasma confinement. Local maxima in the momentum fluxes are also observed, allowing for the possibility of bifurcations in the E x B shear. The sensitive dependence of heat flux on temperature gradient is relaxed for large flow shear values, with the critical temperature gradient increasing at lower flow shear values. The turbulent Prandtl number is found to be largely independent of temperature and flow gradients, with a value close to unity.
Axisymmetric free-boundary equilibrium reconstructions of tokamak plasmas in the Lithium Tokamak eXperiment (LTX) are performed using the PSI-Tri equilibrium code. Reconstructions in LTX are complicated by the presence of long-lived non-axisymmetric eddy currents generated by vacuum vessel and first wall structures. To account for this effect, reconstructions are performed with additional toroidal current sources in these conducting regions. The source distributions are fixed poloidally, but their scale is adjusted as part of the full reconstruction. Eddy distributions are computed by toroidally averaging currents, generated by coupling to vacuum field coils, from a simplified 3D filament model of important conducting structures. The full 3D eddy current fields are also used to enable the inclusion of local magnetic field measurements, which have strong 3D eddy current pick-up, as reconstruction constraints. Using this method, equilibrium reconstruction yields good agreement with all available diagnostic signals. An accompanying field perturbation produced by 3D eddy currents on the plasma surface with primarily n=2, m=1 character is also predicted for these equilibria.
Disruption prediction and mitigation is of key importance in the development of sustainable tokamakreactors. Machine learning has become a key tool in this endeavour. In this paper multiple machinelearning models will be tested and compared. A particular focus has been placed on their portability.This describes how easily the models can be used with data from new devices. The methods used inthis paper are support vector machine, 2-tiered support vector machine, random forest, gradient boostedtrees and long-short term memory. The results show that the support vector machine performanceis marginally better among the standard models, while the gradient boosted trees performed the worst.The portable variant of each model had lower performance. Random forest obtained the highest portableperformance. Results also suggest that disruptions can be detected as early as 600ms before the event.An analysis of the computational cost showed all models run in less than 1ms, allowing sufficient timefor disruption mitigation.
Extending the ideal MHD stability code MISHKA, a new code, MISHKA-A, is developed to study the impact of pressure anisotropy on plasma stability. Based on full anisotropic equilibrium and geometry, the code can provide normal mode analysis with three fluid closure models: the single adiabatic model (SA), the double adiabatic model (CGL) and the incompressible model. A study on the plasma continuous spectrum shows that in low beta, large aspect ratio plasma, the main impact of anisotropy lies in the modification of the BAE gap and the sound frequency, if the q profile is conserved. The SA model preserves the BAE gap structure as ideal MHD, while in CGL the lowest frequency branch does not touch zero frequency at the resonant flux surface where $m+nq=0$, inducing a gap at very low frequency. Also, the BAE gap frequency with bi-Maxwellian distribution in both model becomes higher if $p_perp > p_parallel$ with a q profile dependency. As a benchmark of the code, we study the m/n=1/1 internal kink mode. Numerical calculation of the marginal stability boundary with bi-Maxwellian distribution shows a good agreement with the generalized incompressible Bussac criterion [A. B. Mikhailovskii, Sov. J. Plasma Phys 9, 190 (1983)]: the mode is stabilized(destabilized) if $p_parallel < p_perp (p_parallel > p_perp)$.
The effect of momentum injection on the temperature gradient in tokamak plasmas is studied. A plausible scenario for transitions to reduced transport regimes is proposed. The transition happens when there is sufficient momentum input so that the velocity shear can suppress or reduce the turbulence. However, it is possible to drive too much velocity shear and rekindle the turbulent transport. The optimal level of momentum injection is determined. The reduction in transport is maximized in the regions of low or zero magnetic shear.