Out-of-equilibrium dynamics of a Bose Einstein condensate in a periodically driven band system


Abstract in English

We report on the out-of-equilibrium dynamics of a Bose-Einstein condensate (BEC) placed in an optical lattice whose phase is suddenly modulated. The frequency and the amplitude of modulation are chosen to ensure a negative renormalized tunneling rate. Under these conditions, staggered states are nucleated by a spontaneous four wave mixing mechanism. The nucleation time is experimentally studied as a function of the renormalized tunnel rate, the atomic density and the modulation frequency. Our results are quantitatively well accounted for by a Truncated Wigner approach and reveal the nucleation of gap solitons after the quench. We discuss the role of quantum versus thermal fluctuations in the nucleation process and experimentally address the limit of the effective Hamiltonian approach.

Download