Versatile relative entropy bounds for quantum networks


Abstract in English

We provide a versatile upper bound on the number of maximally entangled qubits, or private bits, shared by two parties via a generic adaptive communication protocol over a quantum network when the use of classical communication is not restricted. Although our result follows the idea of Azuma et al. [Nat. Comm. 7, 13523 (2016)] of splitting the network into two parts, our approach relaxes their strong restriction, consisting of the use of a single entanglement measure in the quantification of the maximum amount of entanglement generated by the channels. In particular, in our bound the measure can be chosen on a channel-by-channel basis, in order to make it as tight as possible. This enables us to apply the relative entropy of entanglement, which often gives a state-of-the-art upper bound, on every Choi-simulable channel in the network, even when the other channels do not satisfy this property. We also develop tools to compute, or bound, the max-relative entropy of entanglement for channels that are invariant under phase rotations. In particular, we present an analytical formula for the max-relative entropy of entanglement of the qubit amplitude damping channel.

Download