Do you want to publish a course? Click here

Versatile relative entropy bounds for quantum networks

124   0   0.0 ( 0 )
 Added by Luca Rigovacca
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We provide a versatile upper bound on the number of maximally entangled qubits, or private bits, shared by two parties via a generic adaptive communication protocol over a quantum network when the use of classical communication is not restricted. Although our result follows the idea of Azuma et al. [Nat. Comm. 7, 13523 (2016)] of splitting the network into two parts, our approach relaxes their strong restriction, consisting of the use of a single entanglement measure in the quantification of the maximum amount of entanglement generated by the channels. In particular, in our bound the measure can be chosen on a channel-by-channel basis, in order to make it as tight as possible. This enables us to apply the relative entropy of entanglement, which often gives a state-of-the-art upper bound, on every Choi-simulable channel in the network, even when the other channels do not satisfy this property. We also develop tools to compute, or bound, the max-relative entropy of entanglement for channels that are invariant under phase rotations. In particular, we present an analytical formula for the max-relative entropy of entanglement of the qubit amplitude damping channel.



rate research

Read More

Quantifying entanglement for multipartite quantum state is a crucial task in many aspects of quantum information theory. Among all the entanglement measures, relative entropy of entanglement $E_{R}$ is an outstanding quantity due to its clear geometric meaning, easy compatibility with different system sizes, and various applications in many other related quantity calculations. Lower bounds of $E_R$ were previously found based on distance to the set of positive partial transpose states. We propose a method to calculate upper bounds of $E_R$ based on active learning, a subfield in machine learning, to generate an approximation of the set of separable states. We apply our method to calculate $E_R$ for composite systems of various sizes, and compare with the previous known lower bounds, obtaining promising results. Our method adds a reliable tool for entanglement measure calculation and deepens our understanding for the structure of separable states.
The existence of a positive log-Sobolev constant implies a bound on the mixing time of a quantum dissipative evolution under the Markov approximation. For classical spin systems, such constant was proven to exist, under the assumption of a mixing condition in the Gibbs measure associated to their dynamics, via a quasi-factorization of the entropy in terms of the conditional entropy in some sub-$sigma$-algebras. In this work we analyze analogous quasi-factorization results in the quantum case. For that, we define the quantum conditional relative entropy and prove several quasi-factorization results for it. As an illustration of their potential, we use one of them to obtain a positive log-Sobolev constant for the heat-bath dynamics with product fixed point.
The property of superadditivity of the quantum relative entropy states that, in a bipartite system $mathcal{H}_{AB}=mathcal{H}_A otimes mathcal{H}_B$, for every density operator $rho_{AB}$ one has $ D( rho_{AB} || sigma_A otimes sigma_B ) ge D( rho_A || sigma_A ) +D( rho_B || sigma_B) $. In this work, we provide an extension of this inequality for arbitrary density operators $ sigma_{AB} $. More specifically, we prove that $ alpha (sigma_{AB})cdot D({rho_{AB}}||{sigma_{AB}}) ge D({rho_A}||{sigma_A})+D({rho_B}||{sigma_B})$ holds for all bipartite states $rho_{AB}$ and $sigma_{AB}$, where $alpha(sigma_{AB})= 1+2 || sigma_A^{-1/2} otimes sigma_B^{-1/2} , sigma_{AB} , sigma_A^{-1/2} otimes sigma_B^{-1/2} - mathbb{1}_{AB} ||_infty$.
Based on the resource theory for quantifying the coherence of quantum channels, we introduce a new coherence quantifier for quantum channels via maximum relative entropy. We prove that the maximum relative entropy for coherence of quantum channels is directly related to the maximally coherent channels under a particular class of superoperations, which results in an operational interpretation of the maximum relative entropy for coherence of quantum channels. We also introduce the conception of sub-superchannels and sub-superchannel discrimination. For any quantum channels, we show that the advantage of quantum channels in sub-superchannel discrimination can be exactly characterized by the maximum relative entropy of coherence for quantum channels. Similar to the maximum relative entropy of coherence for channels, the robustness of coherence for quantum channels has also been investigated. We show that the maximum relative entropy of coherence for channels provides new operational interpretations of robustness of coherence for quantum channels and illustrates the equivalence of the dephasing-covariant superchannels, incoherent superchannels, and strictly incoherent superchannels in these two operational tasks.
Given two pairs of quantum states, a fundamental question in the resource theory of asymmetric distinguishability is to determine whether there exists a quantum channel converting one pair to the other. In this work, we reframe this question in such a way that a catalyst can be used to help perform the transformation, with the only constraint on the catalyst being that its reduced state is returned unchanged, so that it can be used again to assist a future transformation. What we find here, for the special case in which the states in a given pair are commuting, and thus quasi-classical, is that this catalytic transformation can be performed if and only if the relative entropy of one pair of states is larger than that of the other pair. This result endows the relative entropy with a fundamental operational meaning that goes beyond its traditional interpretation in the setting of independent and identical resources. Our finding thus has an immediate application and interpretation in the resource theory of asymmetric distinguishability, and we expect it to find application in other domains.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا