No Arabic abstract
We determine the magnetic field strength in the OMC 1 region of the Orion A filament via a new implementation of the Chandrasekhar-Fermi method using observations performed as part of the James Clerk Maxwell Telescope (JCMT) B-Fields In Star-Forming Region Observations (BISTRO) survey with the POL-2 instrument. We combine BISTRO data with archival SCUBA-2 and HARP observations to find a plane-of-sky magnetic field strength in OMC 1 of $B_{rm pos}=6.6pm4.7$ mG, where $delta B_{rm pos}=4.7$ mG represents a predominantly systematic uncertainty. We develop a new method for measuring angular dispersion, analogous to unsharp masking. We find a magnetic energy density of $sim1.7times 10^{-7}$ Jm$^{-3}$ in OMC 1, comparable both to the gravitational potential energy density of OMC 1 ($sim 10^{-7}$ Jm$^{-3}$), and to the energy density in the Orion BN/KL outflow ($sim 10^{-7}$ Jm$^{-3}$). We find that neither the Alfv{e}n velocity in OMC 1 nor the velocity of the super-Alfv{e}nic outflow ejecta is sufficiently large for the BN/KL outflow to have caused large-scale distortion of the local magnetic field in the $sim$500-year lifetime of the outflow. Hence, we propose that the hour-glass field morphology in OMC 1 is caused by the distortion of a primordial cylindrically-symmetric magnetic field by the gravitational fragmentation of the filament and/or the gravitational interaction of the BN/KL and S clumps. We find that OMC 1 is currently in or near magnetically-supported equilibrium, and that the current large-scale morphology of the BN/KL outflow is regulated by the geometry of the magnetic field in OMC 1, and not vice versa.
We present the 850 $mu$m polarization observations toward the IC5146 filamentary cloud taken using the Submillimetre Common-User Bolometer Array 2 (SCUBA-2) and its associated polarimeter (POL-2), mounted on the James Clerk Maxwell Telescope (JCMT), as part of the B-fields In STar forming Regions Observations (BISTRO). This work is aimed at revealing the magnetic field morphology within a core-scale ($lesssim 1.0$ pc) hub-filament structure (HFS) located at the end of a parsec-scale filament. To investigate whether or not the observed polarization traces the magnetic field in the HFS, we analyze the dependence between the observed polarization fraction and total intensity using a Bayesian approach with the polarization fraction described by the Rice likelihood function, which can correctly describe the probability density function (PDF) of the observed polarization fraction for low signal-to-noise ratio (SNR) data. We find a power-law dependence between the polarization fraction and total intensity with an index of 0.56 in $A_Vsim$ 20--300 mag regions, suggesting that the dust grains in these dense regions can still be aligned with magnetic fields in the IC5146 regions. Our polarization maps reveal a curved magnetic field, possibly dragged by the contraction along the parsec-scale filament. We further obtain a magnetic field strength of 0.5$pm$0.2 mG toward the central hub using the Davis-Chandrasekhar-Fermi method, corresponding to a mass-to-flux criticality of $sim$ $1.3pm0.4$ and an Alfv{e}nic Mach number of $<$0.6. These results suggest that gravity and magnetic field is currently of comparable importance in the HFS, and turbulence is less important.
We report 850~$mu$m dust polarization observations of a low-mass ($sim$12 $M_{odot}$) starless core in the $rho$ Ophiuchus cloud, Ophiuchus C, made with the POL-2 instrument on the James Clerk Maxwell Telescope (JCMT) as part of the JCMT B-fields In STar-forming Region Observations (BISTRO) survey. We detect an ordered magnetic field projected on the plane of sky in the starless core. The magnetic field across the $sim$0.1~pc core shows a predominant northeast-southwest orientation centering between $sim$40$^circ$ to $sim$100$^circ$, indicating that the field in the core is well aligned with the magnetic field in lower-density regions of the cloud probed by near-infrared observations and also the cloud-scale magnetic field traced by Planck observations. The polarization percentage ($P$) decreases with an increasing total intensity ($I$) with a power-law index of $-$1.03 $pm$ 0.05. We estimate the plane-of-sky field strength ($B_{mathrm{pos}}$) using modified Davis-Chandrasekhar-Fermi (DCF) methods based on structure function (SF), auto-correlation (ACF), and unsharp masking (UM) analyses. We find that the estimates from the SF, ACF, and UM methods yield strengths of 103 $pm$ 46 $mu$G, 136 $pm$ 69 $mu$G, and 213 $pm$ 115 $mu$G, respectively. Our calculations suggest that the Ophiuchus C core is near magnetically critical or slightly magnetically supercritical (i.e. unstable to collapse). The total magnetic energy calculated from the SF method is comparable to the turbulent energy in Ophiuchus C, while the ACF method and the UM method only set upper limits for the total magnetic energy because of large uncertainties.
We present the POL-2 850 $mu$m linear polarization map of the Barnard 1 clump in the Perseus molecular cloud complex from the B-fields In STar-forming Region Observations (BISTRO) survey at the James Clerk Maxwell Telescope. We find a trend of decreasing polarization fraction as a function of total intensity, which we link to depolarization effects towards higher density regions of the cloud. We then use the polarization data at 850 $mu$m to infer the plane-of-sky orientation of the large-scale magnetic field in Barnard 1. This magnetic field runs North-South across most of the cloud, with the exception of B1-c where it turns more East-West. From the dispersion of polarization angles, we calculate a turbulence correlation length of $5.0 pm 2.5$ arcsec ($1500$ au), and a turbulent-to-total magnetic energy ratio of $0.5 pm 0.3$ inside the cloud. We combine this turbulent-to-total magnetic energy ratio with observations of NH$_3$ molecular lines from the Green Bank Ammonia Survey (GAS) to estimate the strength of the plane-of-sky component of the magnetic field through the Davis-Chandrasekhar-Fermi method. With a plane-of-sky amplitude of $120 pm 60$ $mu$G and a criticality criterion $lambda_c = 3.0 pm 1.5$, we find that Barnard 1 is a supercritical molecular cloud with a magnetic field nearly dominated by its turbulent component.
We present the first 850 $mu$m polarization observations in the most active star-forming site of the Rosette Molecular Cloud (RMC, $dsim$1.6 kpc) in the wall of the Rosette Nebula, imaged with the SCUBA-2/POL-2 instruments of the JCMT, as part of the B-Fields In Star-Forming Region Observations 2 (BISTRO-2) survey. From the POL-2 data we find that the polarization fraction decreases with the 850 $mu$m continuum intensity with $alpha$ = 0.49 $pm$ 0.08 in the $p propto I^{rm -alpha}$ relation, which suggests that some fraction of the dust grains remain aligned at high densities. The north of our 850 $mu$m image reveals a gemstone ring morphology, which is a $sim$1 pc-diameter ring-like structure with extended emission in the head to the south-west. We hypothesize that it might have been blown by feedback in its interior, while the B-field is parallel to its circumference in most places. In the south of our SCUBA-2 field the clumps are apparently connected with filaments which follow Infrared Dark Clouds (IRDCs). Here, the POL-2 magnetic field orientations appear bimodal with respect to the large-scale Planck field. The mass of our effective mapped area is $sim$ 174 $M_odot$ that we calculate from 850 $mu$m flux densities. We compare our results with masses from large-scale emission-subtracted Herschel 250 $mu$m data, and find agreement within 30%. We estimate the POS B-field strength in one typical subregion using the Davis-Chandrasekhar-Fermi (DCF) technique and find 80 $pm$ 30 $mu$G toward a clump and its outskirts. The estimated mass-to-flux ratio of $lambda$ = 2.3 $pm$ 1.0 suggests that the B-field is not sufficiently strong to prevent gravitational collapse in this subregion.
Measurement of magnetic field strengths in a molecular cloud is essential for determining the criticality of magnetic support against gravitational collapse. In this paper, as part of the JCMT BISTRO survey, we suggest a new application of the Davis-Chandrasekhar-Fermi (DCF) method to estimate the distribution of magnetic field strengths in the OMC-1 region. We use observations of dust polarization emission at 450 $mu$m and 850 $mu$m, and C$^{18}$O (3-2) spectral line data obtained with the JCMT. We estimate the volume density, the velocity dispersion and the polarization angle dispersion in a box, 40$$ $times$ 40$$ (5$times$5 pixels), which moves over the OMC-1 region. By substituting three quantities in each box to the DCF method, we get magnetic field strengths over the OMC-1 region. We note that there are very large uncertainties in inferred field strengths, as discussed in detail in this paper. The field strengths vary from 0.8 to 26.4 mG and their mean value is about 6 mG. Additionally, we obtain maps of the mass-to-flux ratio in units of a critical value and the Alfv$acute{e}$n mach number. The central parts of the BN-KL and South (S) clumps in the OMC-1 region are magnetically supercritical, so the magnetic field cannot support the clumps against gravitational collapse. However, the outer parts of the region are magnetically subcritical. The mean Alfv$acute{e}$n mach number is about 0.4 over the region, which implies that the magnetic pressure exceeds the turbulent pressure in the OMC 1 region.