Do you want to publish a course? Click here

Drag Force on Heavy Quarks and Spatial String Tension

235   0   0.0 ( 0 )
 Added by Oleg Andreev
 Publication date 2017
  fields
and research's language is English
 Authors Oleg Andreev




Ask ChatGPT about the research

Heavy quark transport coefficients in a strongly coupled Quark-Gluon Plasma can be evaluated using a gauge/string duality and lattice QCD. Via this duality, one can argue that for low momenta the drag coefficient for heavy quarks is proportional to the spatial string tension. Such a tension is well studied on the lattice that allows one to straightforwardly make non-perturbative estimates of the heavy quark diffusion coefficients near the critical point. The obtained results are consistent with those in the literature.



rate research

Read More

234 - Oleg Andreev 2018
We use gauge/string duality to model a doubly heavy diquark in a color antitriplet moving in a thermal plasma at temperatures near the critical. With the assumption that there is no relative motion between the constituents, we calculate the drag force on the diquark. At high enough speed we find that diquark string configurations develop a cusp. In addition, we estimate the spatial string tension at non-zero baryon chemical potential, and also briefly discuss an extension to a triply heavy triquark in a color triplet.
The computation of the spatial string tension of finite temperature QCD is discussed in QCD and in a gravity+scalar model of gauge/gravity duality.
We consider the string-net model on the honeycomb lattice for Ising anyons in the presence of a string tension. This competing term induces a nontrivial dynamics of the non-Abelian anyonic quasiparticles and may lead to a breakdown of the topological phase. Using high-order series expansions and exact diagonalizations, we determine the robustness of this doubled Ising phase which is found to be separated from two gapped phases. An effective quantum dimer model emerges in the large tension limit giving rise to two different translation symmetry-broken phases. Consequently, we obtain four transition points, two of which are associated with first-order transitions whereas the two others are found to be continuous and provide examples of recently proposed Bose condensation for anyons.
69 - Oleg Andreev 2021
Making use of the gauge/string duality, it is possible to study some aspects of the string breaking phenomenon in the three quark system. Our results point out that the string breaking distance is not universal and depends on quark geometry. The estimates of the ratio of the string breaking distance in the three quark system to that in the quark-antiquark system would range approximately from $frac{2}{3}$ to $1$. In addition, it is shown that there are special geometries which allow more than one breaking distance.
Rapidity-odd directed flow in heavy ion collisions can originate from two very distinct sources in the collision dynamics i. an initial tilt of the fireball in the reaction plane that generates directed flow of the constituents independent of their charges, and ii. the Lorentz force due to the strong primordial electromagnetic field that drives the flow in opposite directions for constituents carrying unlike sign charges. We study the directed flow of open charm mesons $D^0$ and $overline{D^0}$ in the presence of both these sources of directed flow. The drag from the tilted matter dominates over the Lorentz force resulting in same sign flow for both $D^0$ and $overline{D^0}$, albeit of different magnitudes. Their average directed flow is about ten times larger than their difference. This charge splitting in the directed flow is a sensitive probe of the electrical conductivity of the produced medium. We further study their beam energy dependence; while the average directed flow shows a decreasing trend, the charge splitting remains flat from $sqrt{s_{NN}}=60$ GeV to $5$ TeV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا