Metal nanoparticle film-based room temperature Coulomb transistor


Abstract in English

Single-electron transistors would represent an approach for less power consuming microelectronic devices if room-temperature operation and industry-compatible fabrication were possible. We present a concept based on stripes of small, self-assembled, colloidal, metal nanoparticles on a back-gate device architecture which leads to well-defined and well-controllable transistor characteristics. This Coulomb transistor has three main advantages: By employing the scalable Langmuir-Blodgett method we combine high-quality chemically synthesized metal nanoparticles with standard lithography techniques. The resulting transistors show on/off ratios above 90 %, reliable and sinusoidal Coulomb oscillations and room-temperature operation. Furthermore, this concept allows for versatile tuning of the device properties like Coulomb-energy gap, threshold voltage, as well as period, position and strength of the oscillations.

Download