Interface Dzyaloshinskii-Moriya interaction in the interlayer exchange antiferromagnetic coupled Pt/CoFeB/Ru/CoFeB systems


Abstract in English

Interfacial Dzyaloshinskii-Moriya interaction (iDMI) in interlayer exchange coupled (IEC) Pt/Co$_{20}$Fe$_{60}$B$_{20}$(1.12 nm)/Ru/Co$_{20}$Fe$_{60}$B$_{20}$(1.12 nm) systems have been studied theoretically and experimentally. Vibrating sample magnetometer has been used to measure their magnetization at saturation and their interlayer exchange coupling constants. These latter are found to be of an antiferromagnetic nature for the investigated Ru range thickness (0.5-1 nm). Their dynamic magnetic properties were studied using Brillouin light scattering (BLS) technique. The BLS measurements reveal pronounced non-reciprocal spin waves propagation. In contrast to the calculations for symmetrical IEC CoFeB layers, this experimental nonreciprocity is Ru thickness and thus coupling strength dependent. Therefore, to explain the experimental behaviour, a theoretical model based on the perpendicular interface anisotropy difference between the bottom and top CoFeB layers has been developed. We show that the Ru thickness dependence of the spin wave non-reciprocity is well reproduced by considering a constant iDMI and different perpendicular interfacial anisotropy fields between the top and bottom CoFeB layers. This anisotropy difference has been confirmed by the investigation of the CoFeB thickness dependence of effective magnetization of Pt/CoFeB/Ru and Ru/CoFeB/MgO individual layers, where a linear behaviour has been observed.

Download