Do you want to publish a course? Click here

Contact graphs of ball packings

114   0   0.0 ( 0 )
 Added by Alexey Glazyrin
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

A contact graph of a packing of closed balls is a graph with balls as vertices and pairs of tangent balls as edges. We prove that the average degree of the contact graph of a packing of balls (with possibly different radii) in $mathbb{R}^3$ is not greater than $13.92$. We also find new upper bounds for the average degree of contact graphs in $mathbb{R}^4$ and $mathbb{R}^5$.



rate research

Read More

We consider packings of congruent circles on a square flat torus, i.e., periodic (w.r.t. a square lattice) planar circle packings, with the maximal circle radius. This problem is interesting due to a practical reason - the problem of super resolution of images. We have found optimal arrangements for N=6, 7 and 8 circles. Surprisingly, for the case N=7 there are three different optimal arrangements. Our proof is based on a computer enumeration of toroidal irreducible contact graphs.
112 - Oleg Musin , Alexey Tarasov 2013
In this article, using the computer, are enumerated all locally-rigid packings by $N$ congruent circles (spherical caps) on the unit sphere ${Bbb S}^2 $ with $N < 12.$ This is equivalent to the enumeration of irreducible spherical contact graphs.
This note gives a detailed proof of the following statement. Let $din mathbb{N}$ and $m,n ge d + 1$, with $m + n ge binom{d+2}{2} + 1$. Then the complete bipartite graph $K_{m,n}$ is generically globally rigid in dimension $d$.
We show that the asymptotic dimension of a geodesic space that is homeomorphic to a subset in the plane is at most three. In particular, the asymptotic dimension of the plane and any planar graph is at most three.
In this article we start a systematic study of the bi-Lipschitz geometry of lamplighter graphs. We prove that lamplighter graphs over trees bi-Lipschitzly embed into Hamming cubes with distortion at most~$6$. It follows that lamplighter graphs over countable trees bi-Lipschitzly embed into $ell_1$. We study the metric behaviour of the operation of taking the lamplighter graph over the vertex-coalescence of two graphs. Based on this analysis, we provide metric characterizations of superreflexivity in terms of lamplighter graphs over star graphs or rose graphs. Finally, we show that the presence of a clique in a graph implies the presence of a Hamming cube in the lamplighter graph over it. An application is a characterization in terms of a sequence of graphs with uniformly bounded degree of the notion of trivial Bourgain-Milman-Wolfson type for arbitrary metric spaces, similar to Ostrovskiis characterization previously obtained in cite{ostrovskii:11}.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا