Do you want to publish a course? Click here

Spatial coherence of fields from generalized sources in the Fresnel regime

135   0   0.0 ( 0 )
 Added by Andre Beckus
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Analytic expressions of the spatial coherence of partially coherent fields propagating in the Fresnel regime in all but the simplest of scenarios are largely lacking and calculation of the Fresnel transform typically entails tedious numerical integration. Here, we provide a closed-form approximation formula for the case of a generalized source obtained by modulating the field produced by a Gauss-Shell source model with a piecewise constant transmission function, which may be used to model the fields interaction with objects and apertures. The formula characterizes the coherence function in terms of the coherence of the Gauss-Schell beam propagated in free space and a multiplicative term capturing the interaction with the transmission function. This approximation holds in the regime where the intensity width of the beam is much larger than the coherence width under mild assumptions on the modulating transmission function. The formula derived for generalized sources lays the foundation for the study of the inverse problem of scene reconstruction from coherence measurements.



rate research

Read More

129 - Ashok Kumar , Hayden Nunley , 2016
Spatial quantum correlations in the transverse degree of freedom promise to enhance optical resolution, image detection, and quantum communications through parallel quantum information encoding. In particular, the ability to observe these spatial quantum correlations in a single shot will enable such enhancements in applications that require real time imaging, such as particle tracking and in-situ imaging of atomic systems. Here, we report on measurements in the far-field that show spatial quantum correlations in single images of bright twin-beams with $10^8$ photons in a 1~$mu$s pulse using an electron-multiplying charge-coupled device camera. A four-wave mixing process in hot rubidium atoms is used to generate narrowband-bright pulsed twin-beams of light. Owing to momentum conservation in this process, the twin-beams are momentum correlated, which leads to spatial quantum correlations in the far field. We show around 2~dB of spatial quantum noise reduction with respect to the shot noise limit. The spatial squeezing is present over a large range of total number of photons in the pulsed twin-beams.
Optics naturally provides us with some powerful mathematical operations. Here we experimentally demonstrate that during reflection or refraction at a single optical planar interface, the optical computing of spatial differentiation can be realized by analyzing specific orthogonal polarization states of light. We show that the spatial differentiation is intrinsically due to the spin Hall effect of light and generally accompanies light reflection and refraction at any planar interface, regardless of material composition or incident angles. The proposed spin-optical method takes advantages of a simple and common structure to enable vectorial-field computation and perform edge detection for ultra-fast and energy-efficient image processing.
The concept of cross density of states characterizes the intrinsic spatial coherence of complex photonic or plasmonic systems, independently on the illumination conditions. Using this tool and the associated intrinsic coherence length, we demonstrate unambiguously the spatial squeezing of eigenmodes on disordered fractal metallic films, thus clarifying a basic issue in plasmonics.
An efficient method to tune the spatial coherence of a degenerate laser over a broad range with minimum variation in the total output power is presented. It is based on varying the diameter of a spatial filter inside the laser cavity. The number of lasing modes supported by the degenerate laser can be controlled from 1 to 320,000, with less than a 50% change in the total output power. We show that a degenerate laser designed for low spatial coherence can be used as an illumination source for speckle-free microscopy that is 9 orders of magnitude brighter than conventional thermal light.
Speckle is maybe the most fundamental interference effect of light in disordered media, giving rise to fascinating physical phenomena and enabling applications in imaging, spectroscopy or cryptography, to name a few. While speckle formed outside a sample is easily measured and analysed, true bulk speckle, as formed inside random media, is difficult to investigate directly due to the obvious issue of physical access. Furthermore, its proper theoretical description poses enormous challenges. Here we report on the first direct measurements of intensity correlations of light inside a disordered medium, using embedded DNA strings decorated with emitters separated by a controlled nanometric distance. Our method provides in situ access to fundamental properties of bulk speckles as their size and polarization degrees of freedom, both of which are found to deviate significantly from theoretical predictions. The deviations are explained, by comparison with rigorous numerical calculations, in terms of correlations among polarization components and non-universal near-field contributions at the nanoscale.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا