We introduce a new knot diagram invariant called the Self-Crossing Index (SCI). Using SCI, we provide bounds for unknotting two families of framed unknots. For one of these families, unknotting using framed Reidemeister moves is significantly harder than unknotting using regular Reidemeister moves. We also investigate the relation between SCI and Arnolds curve invariant St, as well as the relation with Hass and Nowiks invariant, which generalizes cowrithe. In particular, the change of SCI under {Omega}3 moves depends only on the forward/backward character of the move, similar to how the change of St or cowrithe depends only on the positive/negative quality of the move.