Integrated analysis of energy transfers in elastic-wave turbulence


Abstract in English

In elastic-wave turbulence, strong turbulence appears in small wave numbers while weak turbulence does in large wave numbers. Energy transfers in the coexistence of these turbulent states are numerically investigated in both of the Fourier space and the real space. An analytical expression of a detailed energy balance reveals from which mode to which mode energy is transferred in the triad interaction. Stretching energy excited by external force is transferred nonlocally and intermittently to large wave numbers as the kinetic energy in the strong turbulence. In the weak turbulence, the resonant interactions according to the weak turbulence theory produces cascading net energy transfer to large wave numbers. Because the systems nonlinearity shows strong temporal intermittency, the energy transfers are investigated at active and moderate phases separately. The nonlocal interactions in the Fourier space are characterized by the intermittent bundles of fibrous structures in the real space.

Download