Do you want to publish a course? Click here

Demonstration of an efficient, photonic-based astronomical spectrograph on an 8-m telescope

59   0   0.0 ( 0 )
 Added by Nemanja Jovanovic
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate for the first time an efficient, photonic-based astronomical spectrograph on the 8-m Subaru Telescope. An extreme adaptive optics system is combined with pupil apodiziation optics to efficiently inject light directly into a single-mode fiber, which feeds a compact cross-dispersed spectrograph based on array waveguide grating technology. The instrument currently offers a throughput of 5% from sky-to-detector which we outline could easily be upgraded to ~13% (assuming a coupling efficiency of 50%). The isolated spectrograph throughput from the single-mode fiber to detector was 42% at 1550 nm. The coupling efficiency into the single-mode fiber was limited by the achievable Strehl ratio on a given night. A coupling efficiency of 47% has been achieved with ~60% Strehl ratio on-sky to date. Improvements to the adaptive optics system will enable 90% Strehl ratio and a coupling of up to 67% eventually. This work demonstrates that the unique combination of advanced technologies enables the realization of a compact and highly efficient spectrograph, setting a precedent for future instrument design on very-large and extremely-large telescopes.



rate research

Read More

In the two decades since the first extra-solar planet was discovered, the detection and characterization of extra-solar planets has become one of the key endeavors in all of modern science. Recently direct detection techniques such as interferometry or coronography have received growing attention because they reveal the population of exoplanets inaccessible to Doppler or transit techniques, and moreover they allow the faint signal from the planet itself to be investigated. Next-generation stellar interferometers are increasingly incorporating photonic technologies due to the increase in fidelity of the data generated. Here, we report the design, construction and commissioning of a new high contrast imager; the integrated pupil-remapping interferometer; an instrument we expect will find application in the detection of young faint companions in the nearest star-forming regions. The laboratory characterisation of the instrument demonstrated high visibility fringes on all interferometer baselines in addition to stable closure phase signals. We also report the first successful on-sky experiments with the prototype instrument at the 3.9-m Anglo-Australian Telescope. Performance metrics recovered were consistent with ideal device behaviour after accounting for expected levels of decoherence and signal loss from the uncompensated seeing. The prospect of complete Fourier-coverage coupled with the current performance metrics means that this photonically-enhanced instrument is well positioned to contribute to the science of high contrast companions.
142 - Stefano Minardi 2011
Regular two-dimensional lattices of evanescently coupled waveguides may provide in the near future photonic components capable of combining interferometrically and simultaneously a large number of telescopes, thus easing the imaging capabilities of optical interferometers. In this paper, the theoretical modeling of the so-called Discrete Beam Combiners (DBC) is described and compared to the conventional model used for photonic beam combiners for astronomical interferometry. The performance of DBCs as compared to an ideal ABCD beam combiner is discussed and applications to astronomical instrumentation analyzed.
The characterisation of exoplanets is critical to understanding planet diversity and formation, their atmospheric composition and the potential for life. This endeavour is greatly enhanced when light from the planet can be spatially separated from that of the host star. One potential method is nulling interferometry, where the contaminating starlight is removed via destructive interference. The GLINT instrument is a photonic nulling interferometer with novel capabilities that has now been demonstrated in on-sky testing. The instrument fragments the telescope pupil into sub-apertures that are injected into waveguides within a single-mode photonic chip. Here, all requisite beam splitting, routing and recombination is performed using integrated photonic components. We describe the design, construction and laboratory testing of our GLINT pathfinder instrument. We then demonstrate the efficacy of this method on sky at the Subaru Telescope, achieving a null-depth precision on sky of $sim10^{-4}$ and successfully determining the angular diameter of stars (via their null-depth measurements) to milli-arcsecond accuracy. A statistical method for analysing such data is described, along with an outline of the next steps required to deploy this technique for cutting-edge science.
On-chip microlaser sources in the blue constitute an important building block for complex integrated photonic circuits on silicon. We have developed photonic circuits operating in the blue spectral range based on microdisks and bus waveguides in III-nitride on silicon. We report on the interplay between microdisk-waveguide coupling and its optical properties. We observe critical coupling and phase matching, i.e. the most efficient energy transfer scheme, for very short gap sizes and thin waveguides (g = 45 nm and w = 170 nm) in the spontaneous emission regime. Whispering gallery mode lasing is demonstrated for a wide range of parameters with a strong dependence of the threshold on the loaded quality factor. We show the dependence and high sensitivity of the output signal on the coupling. Lastly, we observe the impact of processing on the tuning of mode resonances due to the very short coupling distances. Such small footprint on-chip integrated microlasers providing maximum energy transfer into a photonic circuit have important potential applications for visible-light communication and lab-on-chip bio-sensors.
In an attempt to develop a streamlined astrophotonic instrument, we demonstrate the realization of an all-photonic device capable of both multimode to single mode conversion and spectral dispersion on an 8-m class telescope with efficient coupling. The device was a monolithic photonic spectrograph which combined an integrated photonic lantern, and an efficient arrayed waveguide grating device. During on-sky testing, we discovered a previously unreported type of noise that made spectral extraction and calibration extremely difficult. The source of the noise was traced to a wavelength-dependent loss mechanism between the feed fibers multimode near-field pattern, and the modal acceptance profile of the integrated photonic lantern. Extensive modeling of the photonic components replicates the wavelength-dependent loss, and demonstrates an identical effect on the final spectral output. We outline that this could be mitigated by directly injecting into the integrated photonic lantern.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا