Do you want to publish a course? Click here

Spectrographs for astrophotonics

94   0   0.0 ( 0 )
 Added by Nicolas Blind
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The next generation of Extremely Large Telescopes (ELT), with diameters up to 39 meters, is planned to begin operation in the next decade and promises new challenges in the development of instruments since the instrument size increases in proportion to the telescope diameter D, and the cost as D2 or faster. The growing field of astrophotonics (the use of photonic technologies in astronomy) could solve this problem by allowing mass production of fully integrated and robust instruments combining various optical functions, with the potential to reduce the size, complexity and cost of instruments. Astrophotonics allows for a broad range of new optical functions, with applications ranging from sky background filtering, high spatial and spectral resolution imaging and spectroscopy. In this paper, we want to provide astronomers with valuable keys to understand how photonics solutions can be implemented (or not) according to the foreseen applications. The paper introduces first key concepts linked to the characteristics of photonics technologies, placed in the framework of astronomy and spectroscopy. We then describe a series of merit criteria that help us determine the potential of a given micro-spectrograph technology for astronomy applications, and then take an inventory of the recent developments in integrated micro-spectrographs with potential for astronomy. We finally compare their performance, to finally draw a map of typical science requirements and pin the identified integrated technologies on it. We finally emphasize the necessary developments that must support micro-spectrograph in the coming years.



rate research

Read More

Astrophotonics is the application of versatile photonic technologies to channel, manipulate, and disperse guided light from one or more telescopes to achieve scientific objectives in astronomy in an efficient and cost-effective way. The developments and demands from the telecommunication industry have driven a major boost in photonic technology and vice versa in the last 40 years. The photonic platform of guided light in fibers and waveguides has opened the doors to next-generation instrumentation for both ground- and space-based telescopes in optical and near/mid-IR bands, particularly for the upcoming extremely large telescopes (ELTs). The large telescopes are pushing the limits of adaptive optics to reach close to a near-diffraction-limited performance. The photonic devices are ideally suited for capturing this AO-corrected light and enabling new and exciting science such as characterizing exoplanet atmospheres. The purpose of this white paper is to summarize the current landscape of astrophotonic devices and their scientific impact, highlight the key issues, and outline specific technological and organizational approaches to address these issues in the coming decade and thereby enable new discoveries as we embark on the era of extremely large telescopes.
268 - Andreas Kelz 2009
Due to its location and climate, Antarctica offers unique conditions for long-period observations across a broad wavelength regime, where important diagnostic lines for molecules and ions can be found, that are essential to understand the chemical properties of the interstellar medium. In addition to the natural benefits of the site, new technologies, resulting from astrophotonics, may allow miniaturised instruments, that are easier to winterise and advanced filters to further reduce the background in the infrared.
Astronomers have come to recognize the benefits of photonics, often in combination with optical systems, in solving longstanding experimental problems in Earth-based astronomy. Here, we explore some of the recent advances made possible by integrated photonics. We also look to the future with a view to entirely new kinds of astronomy, particularly in an era of the extremely large telescopes.
Precise wavelength calibration is a critical issue for high-resolution spectroscopic observations. The ideal calibration source should be able to provide a very stable and dense grid of evenly distributed spectral lines of constant intensity. A new method which satisfies all mentioned conditions has been developed by our group. The approach is to actively measure the exact position of a single spectral line of a Fabry-Perot etalon with very high precision with a wavelength-tuneable laser and compare it to an extremely stable wavelength standard. The ideal choice of standard is the D2 absorption line of Rubidium, which has been used as an optical frequency standard for decades. With this technique, the problem of stable wavelength calibration of spectrographs becomes a problem of how reliably we can measure and anchor one etalon line to the Rb transition. In this work we present our self-built module for Rb saturated absorption spectroscopy and discuss its stability.
Since its emergence two decades ago, astrophotonics has found broad application in scientific instruments at many institutions worldwide. The case for astrophotonics becomes more compelling as telescopes push for AO-assisted, diffraction-limited performance, a mode of observing that is central to the next-generation of extremely large telescopes (ELTs). Even AO systems are beginning to incorporate advanced photonic principles as the community pushes for higher performance and more complex guide-star configurations. Photonic instruments like Gravity on the Very Large Telescope achieve milliarcsec resolution at 2000 nm which would be very difficult to achieve with conventional optics. While space photonics is not reviewed here, we foresee that remote sensing platforms will become a major beneficiary of astrophotonic components in the years ahead. The field has given back with the development of new technologies (e.g. photonic lantern, large area multi-core fibres) already finding widespread use in other fields; Google Scholar lists more than 400 research papers making reference to this technology. This short review covers representative key developments since the 2009 Focus issue on Astrophotonics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا