No Arabic abstract
In the context of the ESA M5 (medium mission) call we proposed a new satellite mission, Theia, based on relative astrometry and extreme precision to study the motion of very faint objects in the Universe. Theia is primarily designed to study the local dark matter properties, the existence of Earth-like exoplanets in our nearest star systems and the physics of compact objects. Furthermore, about 15 $%$ of the mission time was dedicated to an open observatory for the wider community to propose complementary science cases. With its unique metrology system and point and stare strategy, Theias precision would have reached the sub micro-arcsecond level. This is about 1000 times better than ESA/Gaias accuracy for the brightest objects and represents a factor 10-30 improvement for the faintest stars (depending on the exact observational program). In the version submitted to ESA, we proposed an optical (350-1000nm) on-axis TMA telescope. Due to ESA Technology readiness level, the cameras focal plane would have been made of CCD detectors but we anticipated an upgrade with CMOS detectors. Photometric measurements would have been performed during slew time and stabilisation phases needed for reaching the required astrometric precision.
Sky survey telescopes and powerful targeted telescopes play complementary roles in astronomy. In order to investigate the nature and characteristics of the motions of very faint objects, a flexibly-pointed instrument capable of high astrometric accuracy is an ideal complement to current astrometric surveys and a unique tool for precision astrophysics. Such a space-based mission will push the frontier of precision astrometry from evidence of earth-massed habitable worlds around the nearest starts, and also into distant Milky way objects up to the Local Group of galaxies. As we enter the era of the James Webb Space Telescope and the new ground-based, adaptive-optics-enabled giant telescopes, by obtaining these high precision measurements on key objects that Gaia could not reach, a mission that focuses on high precision astrometry science can consolidate our theoretical understanding of the local universe, enable extrapolation of physical processes to remote redshifts, and derive a much more consistent picture of cosmological evolution and the likely fate of our cosmos. Already several missions have been proposed to address the science case of faint objects in motion using high precision astrometry ESA missions: NEAT for M3, micro-NEAT for S1 mission, and Theia for M4 and M5. Additional new mission configurations adapted with technological innovations could be envisioned to pursue accurate measurements of these extremely small motions. The goal of this white paper is to address the fundamental science questions that are at stake when we focus on the motions of faint sky objects and to briefly review quickly instrumentation and mission profiles.
We present a technique-led review of the progression of precise radio astrometry, from the first demonstrations, half a century ago, until to date and into the future. We cover the developments that have been fundamental to allow high accuracy and precision astrometry to be regularly achieved. We review the opportunities provided by the next-generation of instruments coming online, which are primarily: SKA, ngVLA and pathfinders, along with EHT and other (sub)mm-wavelength arrays, Space-VLBI, Geodetic arrays and optical astrometry from GAIA. From the historical development we predict the future potential astrometric performance, and therefore the instrumental requirements that must be provided to deliver these. The next-generation of methods will allow ultra-precise astrometry to be performed at a much wider range of frequencies (hundreds of MHz to hundreds of GHz). One of the key potentials is that astrometry will become generally applicable, and therefore unbiased large surveys can be performed. The next-generation methods are fundamental in allowing this. We review the small but growing number of major astrometric surveys in the radio, to highlight the scientific impact that such projects can provide. Based on these perspectives, the future of radio astrometry is bright. We foresee a revolution coming from: ultra-high precision radio astrometry, large surveys of many objects, improved sky coverage and at new frequency bands other than those available today. These will enable the addressing of a host of innovative open scientific questions in astrophysics.
We present an open-source Python package, Orbits from Radial Velocity, Absolute, and/or Relative Astrometry (orvara), to fit Keplerian orbits to any combination of radial velocity, relative astrometry, and absolute astrometry data from the Hipparcos-Gaia Catalog of Accelerations. By combining these three data types, one can measure precise masses and sometimes orbital parameters even when the observations cover a small fraction of an orbit. orvara achieves its computational performance with an eccentric anomaly solver five to ten times faster than commonly used approaches, low-level memory management to avoid python overheads, and by analytically marginalizing out parallax, barycenter proper motion, and the instrument-specific radial velocity zero points. Through its integration with the Hipparcos and Gaia intermediate astrometry package htof, orvara can properly account for the epoch astrometry measurements of Hipparcos and the measurement times and scan angles of individual Gaia epochs. We configure orvara with modifiable .ini configuration files tailored to any specific stellar or planetary system. We demonstrate orvara with a case study application to a recently discovered white dwarf/main sequence (WD/MS) system, HD 159062. By adding absolute astrometry to literature RV and relative astrometry data, our comprehensive MCMC analysis improves the precision of HD 159062Bs mass by more than an order of magnitude to $0.6083^{+0.0083}_{-0.0073},M_odot$. We also derive a low eccentricity and large semimajor axis, establishing HD 159062AB as a system that did not experience Roche lobe overflow.
We present first results of a new instrument, the Generalized Differential Image Motion Monitor (GDIMM), aiming at monitoring parameters of the optical turbulence (seeing, isoplanatic angle, coherence time and outer scale). GDIMM is based on a small telescope equipped with a 3-holes mask at its entrance pupil. The seeing is measured by the classical DIMM technique using two sub-pupils of the mask (6 cm diameter separated by a distance of 20 cm), the isoplanatic angle is estimated from scintillation through the third sub-pupil (its diameter is 10 cm, with a central obstruction of 4 cm). The coherence time is deduced from the temporal structure function of the angle of arrival (AA) fluctuations, thanks to the high-speed sampling rate of the camera. And the difference of the motion variances from sub-apertures of different diameters makes it possible to estimate the outer scale. GDIMM is a compact and portable instrument, and can be remotely controlled by an operator. We show in this paper the first results of test campaigns obtained in 2013 and 2014 at Nice observatory and the Plateau de Calern (France). Comparison with simultaneous data obtained with the Generalized Seeing Monitor (GSM) are also presented.
In this contribution we report on our work to increase the spectral range of the Michigan Infrared Combiner-eXeter (MIRC-X) instrument at the CHARA array to allow for dual H and J band interferometric observations. We comment on the key science drivers behind this project and the methods of characterisation and correction of instrumental birefringence and dispersion. In addition, we report on the first results from on-sky commissioning in November 2019.