Photosynthetic organisms harvest light energy, utilizing the absorption and energy transfer properties of protein-bound chromophores. Controlling the harvesting efficiency is critical for the optimal function of the photosynthetic apparatus. Here, we show that cyanobacterial light-harvesting antenna may be able to regulate the flow of energy in order to switch reversibly from efficient energy conversion to photo-protective quenching via a structural change. We isolated cyanobacterial light harvesting proteins, phycocyanin and allophycocyanin, and measured their optical properties in solution and in an aggregated-desiccated state. The results indicate that energy band structures are changed, generating a switch between two modes of operation: exciton transfer and quenching; achieved without dedicated carotenoid quenchers. This flexibility can contribute greatly to the large dynamic range of cyanobacterial light harvesting systems.