Do you want to publish a course? Click here

Ramp Reversal Memory and Phase-Boundary Scarring in Transition Metal Oxides

59   0   0.0 ( 0 )
 Added by Amos Sharoni
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Transition metal oxides (TMOs) are complex electronic systems which exhibit a multitude of collective phenomena. Two archetypal examples are VO2 and NdNiO3, which undergo a metal-insulator phase-transition (MIT), the origin of which is still under debate. Here we report the discovery of a memory effect in both systems, manifest through an increase of resistance at a specific temperature, which is set by reversing the temperature-ramp from heating to cooling during the MIT. The characteristics of this ramp-reversal memory effect do not coincide with any previously reported history or memory effects in manganites, electron-glass or magnetic systems. From a broad range of experimental features, supported by theoretical modelling, we find that the main ingredients for the effect to arise are the spatial phase-separation of metallic and insulating regions during the MIT and the coupling of lattice strain to the local critical temperature of the phase transition. We conclude that the emergent memory effect originates from phase boundaries at the reversal-temperature leaving `scars` in the underlying lattice structure, giving rise to a local increase in the transition temperature. The universality and robustness of the effect shed new light on the MIT in complex oxides.

rate research

Read More

We discuss the application of the Agapito Curtarolo and Buongiorno Nardelli (ACBN0) pseudo-hybrid Hubbard density functional to several transition metal oxides. ACBN0 is a fast, accurate and parameter-free alternative to traditional DFT+$U$ and hybrid exact exchange methods. In ACBN0, the Hubbard energy of DFT+$U$ is calculated via the direct evaluation of the local Coulomb and exchange integrals in which the screening of the bare Coulomb potential is accounted for by a renormalization of the density matrix. We demonstrate the success of the ACBN0 approach for the electronic properties of a series technologically relevant mono-oxides (MnO, CoO, NiO, FeO, both at equilibrium and under pressure). We also present results on two mixed valence compounds, Co$_3$O$_4$ and Mn$_3$O$_4$. Our results, obtained at the computational cost of a standard LDA/PBE calculation, are in excellent agreement with hybrid functionals, the GW approximation and experimental measurements.
The electronic structure in alkaline earth AeO (Ae = Be, Mg, Ca, Sr, Ba) and post-transition metal oxides MeO (Me = Zn, Cd, Hg) is probed with oxygen K-edge X-ray absorption and emission spectroscopy. The experimental data is compared with density functional theory electronic structure calculations. We use our experimental spectra of the oxygen K-edge to estimate the bandgaps of these materials, and compare our results to the range of values available in the literature.
The discovery of intrinsic magnetic topological order in $rm MnBi_2Te_4$ has invigorated the search for materials with coexisting magnetic and topological phases. These multi-order quantum materials are expected to exhibit new topological phases that can be tuned with magnetic fields, but the search for such materials is stymied by difficulties in predicting magnetic structure and stability. Here, we compute over 27,000 unique magnetic orderings for over 3,000 transition metal oxides in the Materials Project database to determine their magnetic ground states and estimate their effective exchange parameters and critical temperatures. We perform a high-throughput band topology analysis of centrosymmetric magnetic materials, calculate topological invariants, and identify 18 new candidate ferromagnetic topological semimetals, axion insulators, and antiferromagnetic topological insulators. To accelerate future efforts, machine learning classifiers are trained to predict both magnetic ground states and magnetic topological order without requiring first-principles calculations.
Inorganic oxyfluorides have significant importance in the development of new functionalities for energy production and storage, photonics, catalysis, etc. In order to explore a simple preparation route that avoids the use of toxic HF or F2 gas as a reaction reagent, we have employed polytetrafluoroethylene (PTFE). Five oxyfluorides including Nb5O12F, Nb3O7F, Ta3O7F, TaO2F, and Mo4O11.2F0.8 were synthesized by reactions between PTFE and transition metal oxides in sealed quartz ampules. The reaction mechanism was studied by means of gas analysis, which detected SiF4 as a main product gas during the reaction. A possible reaction mechanism between the PTFE and transition metal oxides is discussed.
Fabricating complex transition metal oxides with a tuneable band gap without compromising their intriguing physical properties is a longstanding challenge. Here we examine the layered ferroelectric bismuth titanate and demonstrate that, by site-specific substitution with the Mott insulator lanthanum cobaltite, its band gap can be narrowed as much as one electron volt, while remaining strongly ferroelectric. We find that when a specific site in the host material is preferentially substituted, a split-off state responsible for the band gap reduction is created just below the conduction band of bismuth titanate. This provides a route for controlling the band gap in complex oxides for use in emerging oxide opto-electronic and energy applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا