No Arabic abstract
In this paper we provide a brief summary of development LivingLab PJAIT as an attempt to establish a comprehensive and sustainable ICT-based solution for empowerment of elderly communities towards better urban participation of seniors. We report on our various endeavors for better involvement and participation of older adults in urban life by lowering ICT barriers, encouraging social inclusion, intergenerational interaction, physical activity and engaging older adults in the process of development of ICT solutions. We report on a model and assumptions of the LivingLab PJAIT as well as a number of activities created and implemented for LivingLab participants: from ICT courses, both traditional and e-learning, through on-line crowdsourcing tasks, to blended activities of different forms and complexity. We also provide conclusions on the lessons learned in the process and some future plans, including solutions for better senior urban participation and citizen science.
With the increasing availability of mobility-related data, such as GPS-traces, Web queries and climate conditions, there is a growing demand to utilize this data to better understand and support urban mobility needs. However, data available from the individual actors, such as providers of information, navigation and transportation systems, is mostly restricted to isolated mobility modes, whereas holistic data analytics over integrated data sources is not sufficiently supported. In this paper we present our ongoing research in the context of holistic data analytics to support urban mobility applications in the Data4UrbanMobility (D4UM) project. First, we discuss challenges in urban mobility analytics and present the D4UM platform we are currently developing to facilitate holistic urban data analytics over integrated heterogeneous data sources along with the available data sources. Second, we present the MiC app - a tool we developed to complement available datasets with intermodal mobility data (i.e. data about journeys that involve more than one mode of mobility) using a citizen science approach. Finally, we present selected use cases and discuss our future work.
Anticipating the political behavior of people will be considerable help for election candidates to assess the possibility of their success and to be acknowledged about the public motivations to select them. In this paper, we provide a general schematic of the architecture of participation anticipating system in presidential election by using KNN, Classification Tree and Naive Bayes and tools orange based on crisp which had hopeful output. To test and assess the proposed model, we begin to use the case study by selecting 100 qualified persons who attend in 11th presidential election of Islamic republic of Iran and anticipate their participation in Kohkiloye & Boyerahmad. We indicate that KNN can perform anticipation and classification processes with high accuracy in compared with two other algorithms to anticipate participation.
The development of democratic systems is a crucial task as confirmed by its selection as one of the Millennium Sustainable Development Goals by the United Nations. In this article, we report on the progress of a project that aims to address barriers, one of which is information overload, to achieving effective direct citizen participation in democratic decision-making processes. The main objectives are to explore if the application of Natural Language Processing (NLP) and machine learning can improve citizens experience of digital citizen participation platforms. Taking as a case study the Decide Madrid Consul platform, which enables citizens to post proposals for policies they would like to see adopted by the city council, we used NLP and machine learning to provide new ways to (a) suggest to citizens proposals they might wish to support; (b) group citizens by interests so that they can more easily interact with each other; (c) summarise comments posted in response to proposals; (d) assist citizens in aggregating and developing proposals. Evaluation of the results confirms that NLP and machine learning have a role to play in addressing some of the barriers users of platforms such as Consul currently experience.
Programming is a valuable skill in the labor market, making the underrepresentation of women in computing an increasingly important issue. Online question and answer platforms serve a dual purpose in this field: they form a body of knowledge useful as a reference and learning tool, and they provide opportunities for individuals to demonstrate credible, verifiable expertise. Issues, such as male-oriented site design or overrepresentation of men among the sites elite may therefore compound the issue of womens underrepresentation in IT. In this paper we audit the differences in behavior and outcomes between men and women on Stack Overflow, the most popular of these Q&A sites. We observe significant differences in how men and women participate in the platform and how successful they are. For example, the average woman has roughly half of the reputation points, the primary measure of success on the site, of the average man. Using an Oaxaca-Blinder decomposition, an econometric technique commonly applied to analyze differences in wages between groups, we find that most of the gap in success between men and women can be explained by differences in their activity on the site and differences in how these activities are rewarded. Specifically, 1) men give more answers than women and 2) are rewarded more for their answers on average, even when controlling for possible confounders such as tenure or buy-in to the site. Women ask more questions and gain more reward per question. We conclude with a hypothetical redesign of the sites scoring system based on these behavioral differences, cutting the reputation gap in half.
Urban theorists, social reformists and philosophers have considered the city as a living organism since Plato. However, despite extraordinary advancements in evolutionary biology, now being used to explain social and cultural phenomena, a proper science of evolution in cities has never been established since Geddes work at the dawn of the Town Planning discipline. Commencing in the tradition of Urban Morphology, this research develops and validates a statistically reliable and universally applicable urban taxonomy. The research solidifies existing definitions of built form at the scale of the urban fabric and identifies the constituent elements of form in 40 contemporary UK cities. Quantifiable measurements of these elements allow mathematical descriptions of their organization and mutual relationships. Further, an optimized list of indices with maximum discriminatory potential distinguishes between cases from four historically characterised categories: 1) Historical, 2) Industrial, 3) New Towns, 4) Sprawl. Finally, a dendrogram is produced that shows the tree of similarity between cases, where the great divide between pre and post WWII war urban form is demonstrated. This work shows that: a) it is conceptually sound and viable to measure urban fabric utilizing public, big-data repositories, b) the proposed urban morphometrics system accurately characterises the structure of urban form and clusters cases properly based on their historical origins, c) scientific models of biological evolution can be applied to urban analysis to understand underlying structural similarities.