Galaxy Formation Through Filamentary Accretion at z=6.1


Abstract in English

We present ALMA observations of the dust continuum and [C II] 158um line emission from the z=6.0695 Lyman Break Galaxy WMH5. These observations at 0.3 spatial resolution show a compact (~3kpc) main galaxy in dust and [C II] emission, with a tail of emission extending to the east by about 5kpc (in projection). The [C II] tail is comprised predominantly of two distinct sub-components in velocity, separated from the core by ~100 and 250km/s, with narrow intrinsic widths of about 80km/s, which we call sub-galaxies. The sub-galaxies themselves are extended east-west by about 3kpc in individual channel images. The [C II] tail joins smoothly into the main galaxy velocity field. The [C II] line to continuum ratios are comparable for the main and sub-galaxy positions, within a factor 2. In addition, these ratios are comparable to z~5.5 LBGs. We conjecture that the WMH5 system represents the early formation of a galaxy through the accretion of smaller satellite galaxies, embedded in a smoother gas distribution, along a possibly filamentary structure. The results are consistent with current cosmological simulations of early galaxy formation, and support the idea of very early enrichment with dust and heavy elements of the accreting material.

Download