New successive variational method of tensor-optimized antisymmetrized molecular dynamics for nuclear many-body systems


Abstract in English

We recently proposed a new variational theory of tensor-optimized antisymmetrized molecular dynamics (TOAMD), which treats the strong interaction explicitly for finite nuclei [T. Myo et al., Prog. Theor. Exp. Phys. 2015, 073D02 (2015)]. In TOAMD, the correlation functions for the tensor force and the short-range repulsion and their multiple products are successively operated to the AMD state. The correlated Hamiltonian is expanded into many-body operators by using the cluster expansion and all the resulting operators are taken into account in the calculation without any truncation. We show detailed results for TOAMD with the nucleon-nucleon interaction AV8$^prime$ for $s$-shell nuclei. The binding energy and the Hamiltonian components are successively converged to exact values of the few-body calculations. We also apply TOAMD to the Malfliet-Tjon central potential having a strong short-range repulsion. TOAMD can treat the short-range correlation and provided accurate energies of $s$-shell nuclei, reproducing the results of few-body calculations. It turns out that the numerical accuracy of TOAMD with double products of the correlation functions is beyond the variational Monte Carlo method with Jastrows product-type correlation functions.

Download