We study the interesting problem of interaction and identification of the hadronic molecules which seem to be deuteron-like structure. In particular, we propose a binding mechanism in which One Boson Exchange Potential plus Yukawa screen-like potential is applied in their relative s-wave state. We propose the dipole-like interaction between two color neutral states to form a hadronic molecule. For the identification of the hadronic molecules, the Weinbergs compositeness theorem is used to distinguish the molecule from confined (elementary) state. The present formalism predict some di-hadronic molecular states, involving quarks (s, c, b or $overline{s}$, $overline{c}$, $overline{b}$) as a constituents, namely, $pn$, $Koverline{K}$, $rho overline{rho}$, $K^{*}overline{K^{*}}$, $Doverline{D^{*}}$($overline{D}D^{*}$), $D^{*}overline{D^{*}}$, $Boverline{B^{*}}$, $B^{*}overline{B^{*}}$, $D^{*pm}overline{D_{1}^{0}}$, $ D^{0}overline{K^{pm}}$, $D^{*0}overline{K^{pm}}$, with their possible quantum numbers.