Denef and Douglas have observed that in certain landscape models the problem of finding small values of the cosmological constant is a large instance of an NP-hard problem. The number of elementary operations (quantum gates) needed to solve this problem by brute force search exceeds the estimated computational capacity of the observable universe. Here we describe a way out of this puzzling circumstance: despite being NP-hard, the problem of finding a small cosmological constant can be attacked by more sophisticated algorithms whose performance vastly exceeds brute force search. In fact, in some parameter regimes the average-case complexity is polynomial. We demonstrate this by explicitly finding a cosmological constant of order $10^{-120}$ in a randomly generated $10^9$-dimensional ADK landscape.