No Arabic abstract
We use the ab initio Bethe Ansatz dynamics to predict the dissociation of one-dimensional cold-atom breathers that are created by a quench from a fundamental soliton. We find that the dissociation is a robust quantum many-body effect, while in the mean-field (MF) limit the dissociation is forbidden by the integrability of the underlying nonlinear Schr{o}dinger equation. The analysis demonstrates the possibility to observe quantum many-body effects without leaving the MF range of experimental parameters. We find that the dissociation time is of the order of a few seconds for a typical atomic-soliton setting.
The beyond mean-field dynamics of a bent dark soliton embedded in a two-dimensional repulsively interacting Bose-Einstein condensate is explored. We examine the case of a single bent dark soliton comparing the mean-field dynamics to a correlated approach, the Multi-Configuration Time-Dependent Hartree method for Bosons. Dynamical snaking of this bent structure is observed, signaling the onset of fragmentation which becomes significant during the vortex nucleation. In contrast to the mean-field approximation filling of the vortex core is observed, leading in turn to the formation of filled-core vortices, instead of the mean-field vortex-antivortex pairs. The resulting smearing effect in the density is a rather generic feature, occurring when solitonic structures are exposed to quantum fluctuations. Here, we show that this filling owes its existence to the dynamical building of an antidark structure developed in the next-to-leading order orbital. We further demonstrate that the aforementioned beyond mean-field dynamics can be experimentally detected using the variance of single shot measurements. Additionally, a variety of excitations including vortices, oblique dark solitons, and open ring dark soliton-like structures building upon higher-lying orbitals is observed. We demonstrate that signatures of the higher-lying orbital excitations emerge in the total density, and can be clearly captured by inspecting the one-body coherence. In the latter context, the localization of one-body correlations exposes the existence of the multi-orbital vortex-antidark structure.
We unravel the correlation effects of the second-order quantum phase transitions emerging on the ground state of a harmonically trapped spin-1 Bose gas, upon varying the involved Zeeman terms, as well as its breathing dynamics triggered by quenching the trapping frequency. It is found that the boundaries of the associated magnetic phases are altered in the presence of interparticle correlations for both ferromagnetic and anti-ferromagnetic spin-spin interactions, an effect which becomes more prominent in the few-body scenario. Most importantly, we unveil a correlation-induced shrinking of the anti-ferromagnetic and broken-axisymmetry phases implying that ground states with bosons polarized in a single spin-component are favored. Turning to the dynamical response of the spinor gas it is shown that its breathing frequency is independent of the system parameters while correlations lead to the formation of filamentary patterns in the one-body density of the participating components. The number of filaments is larger for increasing spin-independent interaction strengths or for smaller particle numbers. Each filament maintains its coherence and exhibits an anti-correlated behavior while distinct filaments show significant losses of coherence and are two-body correlated. Interestingly, we demonstrate that for an initial broken-axisymmetry phase an enhanced spin-flip dynamics takes place which can be tuned either via the linear Zeeman term or the quench amplitude.
The scattering of 1D matter wave bright solitons on attractive potentials enables one to populate bound states, a feature impossible with noninteracting wave packets. Compared to noninteracting states, the populated states are renormalized by the attractive interactions between atoms and keep the same topology. This renormalization can even transform a virtual state into a bound state. By switching off adiabatically the interactions, the trapped wave packets converge towards the true noninteracting bound states. Our numerical studies show how such scattering experiments can reveal and characterize the surface states of a periodic structure whose translational invariance has been broken. We provide evidence that the corresponding 3D regime should be accessible with current techniques.
We study the fluctuation properties of a one-dimensional many-body quantum system composed of interacting bosons, and investigate the regimes where quantum noise or, respectively, thermal excitations are dominant. For the latter we develop a semiclassical description of the fluctuation properties based on the Ornstein-Uhlenbeck stochastic process. As an illustration, we analyze the phase correlation functions and the full statistical distributions of the interference between two one-dimensional systems, either independent or tunnel-coupled and compare with the Luttinger-liquid theory.
A study of bright matter-wave solitons of a cesium Bose-Einstein condensate (BEC) is presented. Production of a single soliton is demonstrated and dependence of soliton atom number on the interatomic interaction is investigated. Formation of soliton trains in the quasi one-dimensional confinement is shown. Additionally, fragmentation of a BEC has been observed outside confinement, in free space. In the end a double BEC production setup for studying soliton collisions is described.