Do you want to publish a course? Click here

Transition of EMRIs through resonance: corrections to higher order in the on-resonance flux modification

73   0   0.0 ( 0 )
 Added by Deyan Mihaylov
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Extreme mass ratio in-spirals (EMRIs) are candidate events for gravitational wave detection in the millihertz range (by detectors like LISA and eLISA). These events involve a stellar-mass black hole, or a similar compact object, descending in the gravitational field of a supermassive black hole, eventually merging with it. Properties of the in-spiralling trajectory away from resonance are well known and have been studied extensively, however little is known about the behaviour of these binary systems at resonance, when the radial and lateral frequencies of the orbit become commensurate. We describe the two existing models, the instantaneous frequency approach used by Gair, Bender, and Yunes, and the standard two timescales approach implemented by Flanagan and Hinderer. In both cases, the exact treatment depends on the modelling of the gravitational self-force, which is currently not available. We extend the results in Gair, Bender and Yunes to higher order in the on-resonance flux modification, and argue that the instantaneous frequency approach is also a valid treatment of the resonance problem. The non-linear differential equations which arise in treating resonances are interesting from a mathematical view point. We present our algorithm for perturbative solutions and the results to third order in the infinitesimal parameter, and discuss the scope of this approach.



rate research

Read More

A detailed Gitman-Lyakhovich-Tyutin analysis for higher-order topologically massive gravity is performed. The full structure of the constraints, the counting of physical degrees of freedom, and the Dirac algebra among the constraints are reported. Moreover, our analysis presents a new structure of the constraints and we compare our results with those reported in the literature where a standard Ostrogradski framework was developed.
We obtain a full characterization of Einstein-Maxwell $p$-form solutions $(boldsymbol{g},boldsymbol{F})$ in $D$-dimensions for which all higher-order corrections vanish identically. These thus simultaneously solve a large class of Lagrangian theories including both modified gravities and (possibly non-minimally coupled) modified electrodynamics. Specifically, both $boldsymbol{g}$ and $boldsymbol{F}$ are fields with vanishing scalar invariants and further satisfy two simple tensorial conditions. They describe a family of gravitational and electromagnetic plane-fronted waves of the Kundt class and of Weyl type III (or more special). The local form of $(boldsymbol{g},boldsymbol{F})$ and a few examples are also provided.
The influence of higher order (stringly inspired) curvature corrections to the classical General Relativity spherically symmetric solution is studied. In string gravity these curvature corrections have a special form and can provide a singular contribution to the field equations because they generate higher derivatives of metric functions multiplied by a small parameter. Analytically and numerically it is shown that sometimes in 4D string gravity the Schwarzschild solution is not recovered when the string coupling constant vanishes and limited number of higher order curvature corrections is considered.
We propose a method to remove the contributions of pileup events from higher-order cumulants and moments of event-by-event particle distributions. Assuming that the pileup events are given by the superposition of two independent single-collision events, we show that the true moments in each multiplicity bin can be obtained recursively from lower multiplicity events. In the correction procedure the necessary information are only the probabilities of pileup events. Other terms are extracted from the experimental data. We demonstrate that the true cumulants can be reconstructed successfully by this method in simple models. Systematics on trigger inefficiencies and correction parameters are discussed.
55 - Jiri Chyla 2005
The QCD corrections to photon structure functions are defined in a way consistent with the factorization scheme invariance. It is shown that the conventional DIS$_{gamma}$ factorization scheme does not respect this invariance and is thus deeply flawed. The origins of the divergent behavior of photonic coefficient function at large $x$ are analyzed and recipe to remove it is suggested.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا