Do you want to publish a course? Click here

Ultracool dwarf benchmarks with emph{Gaia} primaries

219   0   0.0 ( 0 )
 Added by Federico Marocco
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore the potential of emph{Gaia} for the field of benchmark ultracool/brown dwarf companions, and present the results of an initial search for metal-rich/metal-poor systems. A simulated population of resolved ultracool dwarf companions to emph{Gaia} primary stars is generated and assessed. Of order $sim$24,000 companions should be identifiable outside of the Galactic plane ($|b| > 10,$deg) with large-scale ground- and space-based surveys including late M, L, T, and Y types. Our simulated companion parameter space covers $0.02 le M/M_{odot} le 0.1$, $0.1 le {rm age/Gyr} le 14$, and $-2.5 le {rm [Fe/H]} le 0.5$, with systems required to have a false alarm probability $<10^{-4}$, based on projected separation and expected constraints on common-distance, common-proper motion, and/or common-radial velocity. Within this bulk population we identify smaller target subsets of rarer systems whose collective properties still span the full parameter space of the population, as well as systems containing primary stars that are good age calibrators. Our simulation analysis leads to a series of recommendations for candidate selection and observational follow-up that could identify $sim$500 diverse emph{Gaia} benchmarks. As a test of the veracity of our methodology and simulations, our initial search uses UKIDSS and SDSS to select secondaries, with the parameters of primaries taken from Tycho-2, RAVE, LAMOST and TGAS. We identify and follow-up 13 new benchmarks. These include M8-L2 companions, with metallicity constraints ranging in quality, but robust in the range $-0.39 le {rm [Fe/H]} le +0.36$, and with projected physical separation in the range $0.6,<,s/{rm kau},<76$. Going forward, emph{Gaia} offers a very high yield of benchmark systems, from which diverse sub-samples may be able to calibrate a range of foundational ultracool/sub-stellar theory and observation.



rate research

Read More

We identify and investigate known ultracool stars and brown dwarfs that are being observed or indirectly constrained by the Gaia mission. These objects will be the core of the Gaia ultracool dwarf sample composed of all dwarfs later than M7 that Gaia will provide direct or indirect information on. We match known L and T dwarfs to the Gaia first data release, the Two Micron All Sky Survey and the Wide-field Infrared Survey Explorer AllWISE survey and examine the Gaia and infrared colours, along with proper motions, to improve spectral typing, identify outliers and find mismatches. There are 321 L and T dwarfs observed directly in the Gaia first data release, of which 10 are later than L7. This represents 45 % of all the known LT dwarfs with estimated Gaia G magnitudes brighter than 20.3 mag. We determine proper motions for the 321 objects from Gaia and the Two Micron All Sky Survey positions. Combining the Gaia and infrared magnitudes provides useful diagnostic diagrams for the determination of L and T dwarf physical parameters. We then search the Tycho-Gaia astrometric solution Gaia first data release subset to find any objects with common proper motions to known L and T dwarfs and a high probability of being related. We find 15 new candidate common proper motion systems.
161 - S. Yu , G. Hallinan , J.G. Doyle 2010
Recently unanticipated magnetic activity in ultracool dwarfs (UCDs, spectral classes later than M7) have emerged from a number of radio observations. The highly (up to 100%) circularly polarized nature and high brightness temperature of the emission has been interpreted as an effective amplification mechanism of the high-frequency electromagnetic waves, the electron cyclotron maser instability (ECMI). In order to understand the magnetic topology and the properties of the radio emitting region and associated plasmas in these ultracool dwarfs and interpret the origin of radio pulses and their radiation mechanism, we built an active region model, based on the rotation of the UCD and the ECMI mechanism. ECMI mechanism is responsible for the radio bursts from the magnetic tubes and the rotation of the dwarf can modulate the integral of flux with respect to time. The high degree of variability in the brightness and the diverse profile of pulses can be interpreted in terms of a large-scale hot active region with extended magnetic structure existing in the magnetosphere of TVLM 513-46546. We suggest the time profile of the radio light curve is in the form of power law in the model. The radio emitting region consists of complicated substructure. With this model, we can determine the nature (e.g. size, temperature, density) of the radio emitting region and plasma. The magnetic topology can also be constrained. We compare our predicted X-ray flux with Chandra X-ray observation of TVLM 513-46546. Although the X-ray detection is only marginally significant, our predicted flux is significantly lower than the observed flux. We suggest more observations at multi-wavelength will help us understand the magnetic field structure and plasma behavior on the ultracool dwarf.
124 - N.R. Deacon 2010
Widefield surveys have always provided a rich hunting ground for the coolest stars and brown dwarfs. The single epoch surveys at the beginning of this century greatly expanded the parameter space for ultracool dwarfs. Here we outline the science possible from new multi-epoch surveys which add extra depth and open the time domain to study.
Empirical trends in stellar X-ray and radio luminosities suggest that low mass ultracool dwarfs (UCDs) should not produce significant radio emission. Defying these expectations, strong non-thermal emission has been observed in a few UCDs in the 1-10 GHz range, with a variable component often attributed to global aurorae and a steady component attributed to other processes such as gyrosynchrotron emission. While both auroral and gyrosynchrotron emission peak near the critical frequency, only the latter radiation is expected to extend into millimeter wavelengths. We present ALMA 97.5 GHz and VLA 33 GHz observations of a small survey of 5 UCDs. LP 349-25, LSR J1835+3259, and NLTT 33370 were detected at 97.5 GHz, while LP 423-31 and LP 415-20 resulted in non-detections at 33 GHz. A significant flare was observed in NLTT 33370 that reached a peak flux of 4880 +/- 360 microJy, exceeding the quiescent flux by nearly an order of magnitude, and lasting 20 seconds. These ALMA observations show bright 97.5 GHz emission with spectral indices ranging from alpha = -0.76 to alpha = -0.29, suggestive of optically thin gyrosynchrotron emission. If such emission traces magnetic reconnection events, then this could have consequences for both UCD magnetic models and the atmospheric stability of planets in orbit around them. Overall, our results provide confirmation that gyrosynchrotron radiation in radio loud UCDs can remain detectable into the millimeter regime.
We have identified a sample of cool field brown dwarf candidates using IRAC data from the Spitzer Deep, Wide-Field Survey (SDWFS). The candidates were selected from 400,000 SDWFS sources with [4.5] <= 18.5 mag and required to have [3.6]-[4.5] >= 1.5 and [4.5] - [8.0] <= 2.0 on the Vega system. The first color requirement selects objects redder than all but a handful of presently known brown dwarfs with spectral classes later than T7, while the second eliminates 14 probable reddened AGN. Optical detection of 4 of the remaining 18 sources implies they are likely also AGN, leaving 14 brown dwarf candidates. For two of the brightest candidates (SDWFS J143524.44+335334.6 and SDWFS J143222.82+323746.5), the spectral energy distributions including near-infrared detections suggest a spectral class of ~ T8. The proper motion is < 0.25 /yr, consistent with expectations for a luminosity inferred distance of >70 pc. The reddest brown dwarf candidate (SDWFS J143356.62+351849.2) has [3.6] - [4.5]=2.24 and H - [4.5] > 5.7, redder than any published brown dwarf in these colors, and may be the first example of the elusive Y-dwarf spectral class. Models from Burrows et al. (2003) predict larger numbers of cool brown dwarfs should be found for a Chabrier (2003) mass function. Suppressing the model [4.5] flux by a factor of two, as indicated by previous work, brings the Burrows models and observations into reasonable agreement. The recently launched Wide-field Infrared Survey Explorer (WISE) will probe a volume ~40x larger and should find hundreds of brown dwarfs cooler than T7.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا