No Arabic abstract
We use a suite of high-resolution cosmological dwarf galaxy simulations to test the accuracy of commonly-used mass estimators from Walker et al.(2009) and Wolf et al.(2010), both of which depend on the observed line-of-sight velocity dispersion and the 2D half-light radius of the galaxy, $Re$. The simulations are part of the the Feedback in Realistic Environments (FIRE) project and include twelve systems with stellar masses spanning $10^{5} - 10^{7} M_{odot}$ that have structural and kinematic properties similar to those of observed dispersion-supported dwarfs. Both estimators are found to be quite accurate: $M_{Wolf}/M_{true} = 0.98^{+0.19}_{-0.12}$ and $M_{Walker}/M_{true} =1.07^{+0.21}_{-0.15}$, with errors reflecting the 68% range over all simulations. The excellent performance of these estimators is remarkable given that they each assume spherical symmetry, a supposition that is broken in our simulated galaxies. Though our dwarfs have negligible rotation support, their 3D stellar distributions are flattened, with short-to-long axis ratios $ c/a simeq 0.4-0.7$. The accuracy of the estimators shows no trend with asphericity. Our simulated galaxies have sphericalized stellar profiles in 3D that follow a nearly universal form, one that transitions from a core at small radius to a steep fall-off $propto r^{-4.2}$ at large $r$, they are well fit by Sersic profiles in projection. We find that the most important empirical quantity affecting mass estimator accuracy is $Re$ . Determining $Re$ by an analytic fit to the surface density profile produces a better estimated mass than if the half-light radius is determined via direct summation.
We identify Local Group (LG) analogs in the IllustrisTNG cosmological simulation, and use these to study two mass estimators for the LG: one based on the timing argument (TA) and one based on the virial theorem (VT). Including updated measurements of the Milky Way-M31 tangential velocity and the cosmological constant, we show that the TA mass estimator slightly overestimates the true median LG-mass, though the ratio of the TA to the true mass is consistent at the approximate 90% c.l. These are in broad agreement with previous results using dark matter-only simulations. We show that the VT estimator better estimates the true LG-mass, though there is a larger scatter in the virial mass to true mass ratio relative to the corresponding ratio for the TA. We attribute the broader scatter in the VT estimator to several factors, including the predominantly radial orbits for LG satellite galaxies, which differs from the VT assumption of isotropic orbits. With the systematic uncertainties we derive, the updated measurements of the LG mass at 90% c.l. are $4.75_{-2.41}^{+2.22} times 10^{12}$ M$_odot$ from the TA and $2.0_{-1.5}^{+2.1} times 10^{12}$ M$_odot$ from the VT.
We quantify the frequency of companions of low redshift ($0.013 < z < 0.0252$), dwarf galaxies ($2 times 10^8$ M$_odot <$ M$_{*} < 5 times 10^9$ M$_odot$) that are isolated from more massive galaxies in SDSS and compare against cosmological expectations using mock observations of the Illustris simulation. Dwarf multiples are defined as 2 or more dwarfs that have angular separations > 55, projected separations r$_p < 150$ kpc and relative line-of-sight velocities $Delta V_{rm LOS} < 150$ km/s. While the mock catalogs predict a factor of 2 more isolated dwarfs than observed in SDSS, the mean number of observed companions per dwarf is $N_c sim 0.04$, in good agreement with Illustris when accounting for SDSS sensitivity limits. Removing these limits in the mock catalogs predicts $N_csim 0.06$ for future surveys (LSST, DESI), which will be complete to M$_* = 2times 10^8$ M$_odot$. The 3D separations of mock dwarf multiples reveal a contamination fraction of $sim$40% in observations from projection effects. Most isolated multiples are pairs; triples are rare and it is cosmologically improbable that bound groups of dwarfs with more than 3 members exist within the parameter range probed in this study. We find that $<$1% of LMC-analogs in the field have an SMC-analog companion. The fraction of dwarf Major Pairs (stellar mass ratio $>$1:4) steadily increases with decreasing Primary stellar mass, whereas the cosmological Major Merger rate (per Gyr) has the opposite behaviour. We conclude that cosmological simulations can be reliably used to constrain the fraction of dwarf mergers across cosmic time.
Over the last decades, cosmological simulations of galaxy formation have been instrumental for advancing our understanding of structure and galaxy formation in the Universe. These simulations follow the non-linear evolution of galaxies modeling a variety of physical processes over an enormous range of scales. A better understanding of the physics relevant for shaping galaxies, improved numerical methods, and increased computing power have led to simulations that can reproduce a large number of observed galaxy properties. Modern simulations model dark matter, dark energy, and ordinary matter in an expanding space-time starting from well-defined initial conditions. The modeling of ordinary matter is most challenging due to the large array of physical processes affecting this matter component. Cosmological simulations have also proven useful to study alternative cosmological models and their impact on the galaxy population. This review presents a concise overview of the methodology of cosmological simulations of galaxy formation and their different applications.
We study the galaxy cosmological mass function (GCMF) in a semi-empirical relativistic approach using observational data provided by galaxy redshift surveys. Starting from the theory of Ribeiro & Stoeger (2003, arXiv:astro-ph/0304094) between the mass-to-light ratio, the selection function obtained from the luminosity function (LF) data and the luminosity density, the average luminosity $L$ and the average galactic mass $mathcal{M}_g$ are computed in terms of the redshift. $mathcal{M}_g$ is also alternatively estimated by a method that uses the galaxy stellar mass function (GSMF). Comparison of these two forms of deriving the average galactic mass allows us to infer a possible bias introduced by the selection criteria of the survey. We used the FORS Deep Field galaxy survey sample of 5558 galaxies in the redshift range $0.5 < z < 5.0$ and its LF Schechter parameters in the B-band, as well as this samples stellar mass-to-light ratio and its GSMF data. Assuming ${mathcal{M}_{g_0}} approx 10^{11} mathcal{M}_odot$ as the local value of the average galactic mass, the LF approach results in $L_{B} propto (1+z)^{(2.40 pm 0.03)}$ and $mathcal{M}_g propto (1+z)^{(1.1pm0.2)}$. However, using the GSMF results produces $mathcal{M}_g propto (1+z)^{(-0.58 pm 0.22)}$. We chose the latter result as it is less biased. We then obtained the theoretical quantities of interest, such as the differential number counts, to calculate the GCMF, which can be fitted by a Schechter function. The derived GCMF follows theoretical predictions in which the less massive objects form first, being followed later by more massive ones. In the range $0.5 < z < 2.0$ the GCMF has a strong variation that can be interpreted as a higher rate of galaxy mergers or as a strong evolution in the star formation history of these galaxies.
We analyze the stellar growth of Brightest Cluster Galaxies (BCGs) produced by cosmological zoom-in hydrodynamical simulations of the formation of massive galaxy clusters. The evolution of the stellar mass content is studied considering different apertures, and tracking backwards either the main progenitor of the $z=0$ BCG or that of the cluster hosting the BCG at $z=0$. Both methods lead to similar results up to $z simeq 1.5$. The simulated BCGs masses at $z=0$ are in agreement with recent observations. In the redshift interval from $z=1$ to $z=0$ we find growth factors 1.3, 1.6 and 3.6 for stellar masses within 30kpc, 50kpc and 10% of $R_{500}$ respectively. The first two factors, and in general the mass evolution in this redshift range, are in agreement with most recent observations. The last larger factor is similar to the growth factor obtained by a semi-analytical model (SAM). Half of the star particles that end up in the inner 50 kpc was typically formed by redshift $sim$ 3.7, while the assembly of half of the BCGs stellar mass occurs on average at lower redshifts $sim 1.5$. This assembly redshift correlates with the mass attained by the cluster at high $z gtrsim 1.3$, due to the broader range of the progenitor clusters at high-$z$. The assembly redshift of BCGs decreases with increasing apertures. Our results are compatible with the {it inside-out} scenario. Simulated BCGs could lack intense enough star formation (SF) at high redshift, while possibly exhibit an excess of residual SF at low redshift.