Do you want to publish a course? Click here

A Markov State Modeling analysis of sliding dynamics of a 2D model

181   0   0.0 ( 0 )
 Added by Martina Teruzzi
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Non-equilibrium Markov State Modeling (MSM) has recently been proposed [Phys. Rev. E 94, 053001 (2016)] as a possible route to construct a physical theory of sliding friction from a long steady state atomistic simulation: the approach builds a small set of collective variables, which obey a transition-matrix based equation of motion, faithfully describing the slow motions of the system. A crucial question is whether this approach can be extended from the original 1D small size demo to larger and more realistic size systems, without an inordinate increase of the number and complexity of the collective variables. Here we present a direct application of the MSM scheme to the sliding of an island made of over 1000 harmonically bound particles over a 2D periodic potential. Based on a totally unprejudiced phase space metric and without requiring any special doctoring, we find that here too the scheme allows extracting a very small number of slow variables, necessary and sufficient to describe the dynamics of island sliding.



rate research

Read More

Markov State Modeling has recently emerged as a key technique for analyzing rare events in thermal equilibrium molecular simulations and finding metastable states. Here we export this technique to the study of friction, where strongly non-equilibrium events are induced by an external force. The approach is benchmarked on the well-studied Frenkel-Kontorova model, where we demonstrate the unprejudiced identification of the minimal basis microscopic states necessary for describing sliding, stick-slip and dissipation. The steps necessary for the application to realistic frictional systems are highlighted.
The recently developed formalism of nonlinear fluctuating hydrodynamics (NLFH) has been instrumental in unraveling many new dynamical universality classes in coupled driven systems with multiple conserved quantities. In principle, this formalism requires knowledge of the exact expression of locally conserved current in terms of local density of the conserved components. However, for most nonequilibrium systems an exact expression is not available and it is important to know what happens to the predictions of NLFH in these cases. We address this question for the first time here in a system with coupled time evolution of sliding particles on a fluctuating energy landscape. In the disordered phase this system shows short-ranged correlations, this system shows short-ranged correlations, the exact form of which is not known, and so the exact expression for current cannot be obtained. We use approximate expressions based on mean-field theory and corrections to it, to test the prediction of NLFH using numerical simulations. In this process we also discover important finite size effects and show how they affect the predictions of NLFH. We find that our system is rich enough to show a large variety of universality classes. From our analytics and simulations we have been able to find parameter values which lead to diffusive, Kardar-Parisi-Zhang (KPZ), $5/3 $ Levy and modified KPZ universality classes. Interestingly, the scaling function in the modified KPZ case turns out to be close to the Prahofer-Spohn function which is known to describe usual KPZ scaling. Our analytics also predict the golden mean and the $3/2$ Levy universality classes within our model but our simulations could not verify this, perhaps due to strong finite size effects.
Understanding the generative mechanism of a natural system is a vital component of the scientific method. Here, we investigate one of the fundamental steps toward this goal by presenting the minimal generator of an arbitrary binary Markov process. This is a class of processes whose predictive model is well known. Surprisingly, the generative model requires three distinct topologies for different regions of parameter space. We show that a previously proposed generator for a particular set of binary Markov processes is, in fact, not minimal. Our results shed the first quantitative light on the relative (minimal) costs of prediction and generation. We find, for instance, that the difference between prediction and generation is maximized when the process is approximately independently, identically distributed.
Rate processes are often modeled using Markov-State Models (MSM). Suppose you know a prior MSM, and then learn that your prediction of some particular observable rate is wrong. What is the best way to correct the whole MSM? For example, molecular dynamics simulations of protein folding may sample many microstates, possibly giving correct pathways through them, while also giving the wrong overall folding rate, when compared to experiment. Here, we describe Caliber Corrected Markov Modeling (C2M2): an approach based on the principle of maximum entropy for updating a Markov model by imposing state- and trajectory- based constraints. We show that such corrections are equivalent to asserting position-dependent diffusion coefficients in continuous-time continuous-space Markov processes modeled by a Smoluchowski equation. We derive the functional form of the diffusion coefficient explicitly in terms of the trajectory-based constraints. We illustrate with examples of 2D particle diffusion and an overdamped harmonic oscillator.
The seek for a new universal formulation for describing various non-equilibrium processes is a central task of modern non-equilibrium thermodynamics. In this paper, a novel steady-state thermodynamic formalism was established for general Markov processes described by the Chapman-Kolmogorov equation. Furthermore, corresponding formalisms of steady-state thermodynamics for master equation and Fokker-Planck equation could be rigorously derived in mathematics. To be concrete, we proved that: 1) in the limit of continuous time, the steady-state thermodynamic formalism for the Chapman-Kolmogorov equation fully agrees with that for the master equation; 2) a similar one-to-one correspondence could be established rigorously between the master equation and Fokker-Planck equation in the limit of large system size; 3) when a Markov process is restrained to one-step jump, the steady-state thermodynamic formalism for the Fokker-Planck equation with discrete state variables also goes to that for master equations, as the discretization step gets smaller and smaller. Our analysis indicated that, with respect to the steady state, general Markov processes admit a unified and self-consistent non-equilibrium thermodynamic formulation, regardless of underlying detailed models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا