Do you want to publish a course? Click here

CBETA Design Report, Cornell-BNL ERL Test Accelerator

172   0   0.0 ( 0 )
 Added by Georg Hoffstaetter
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

This design report describes the construction plans for the worlds first multi-pass SRF ERL. It is a 4-pass recirculating linac that recovers the beams energy by 4 additional, decelerating passes. All beams are returned for deceleration in a single beam pipe with a large-momentum-aperture permanent magnet FFAG optics. Cornell University has been pioneering a new class of accelerators, Energy Recovery Linacs (ERLs), with a new characteristic set of beam parameters. Technology has been prototyped that is essential for any high brightness electron ERL. This includes a DC electron source and an SRF injector Linac with world-record current and normalized brightness in a bunch train, a high-current linac cryomodule, and a high-power beam stop, and several diagnostics tools for high-current and high-brightness beams. All these are now being used to construct a novel one-cryomodule ERL in Cornells Wilson Lab. Brookhaven National Laboratory (BNL) has designed a multi-turn ERL for eRHIC, where beam is transported more than 20 times around the 4km long RHIC tunnel. The number of transport lines is minimized by using two arcs with strongly-focusing permanent magnets that can control many beams of different energies. A collaboration between BNL and Cornell has been formed to investigate this multi-turn eRHIC ERL design by building a 4-turn, one-cryomodule ERL at Cornell. It also has a return loop built with strongly focusing permanent magnets and is meant to accelerate 40mA beam to 150MeV. This high-brightness beam will have applications beyond accelerator research, in industry, in nuclear physics, and in X-ray science.



rate research

Read More

130 - Chris Adolphsen 2013
The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a push-pull configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.
This work describes first commissioning results from the Cornell Brookhaven Energy Recovery Test Accelerator Fractional Arc Test. These include the recommissioning of the Cornell photo-injector, the first full energy operation of the main linac with beam, as well as commissioning of the lowest energy matching beamline (splitter) and a partial section of the Fixed Field Alternating gradient (FFA) return loop featuring first production Halbach style permanent magnets. Achieving these tasks required characterization of the injection beam, calibration and phasing of the main linac cavities, demonstration of the required 36 MeV energy gain, and measurement of the splitter line horizontal dispersion and R56 at the nominal 42 MeV. In addition, a procedure for determining the BPM offsets, as well as the tune per cell in the FFA section via scanning the linac energy and inducing betatron oscillations around the periodic orbit in the fractional arc was developed and tested. A detailed comparison of these measurements to simulation is discussed.
The present Report concerns the current status of the Italian Tau/Charm accelerator project and in particular discusses the issues related to the lattice design, to the accelerators systems and to the associated conventional facilities. The project aims at realizing a variable energy Flavor Factory between 1 and 4.6 GeV in the center of mass, and succeeds to the SuperB project from which it inherits most of the solutions proposed in this document. The work comes from a cooperation involving the INFN Frascati National Laboratories accelerator experts, the young newcomers, mostly engineers, of the Cabibbo Lab consortium and key collaborators from external laboratories.
129 - Chris Adolphsen 2013
The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a push-pull configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.
The use of nonlinear lattices with large betatron tune spreads can increase instability and space charge thresholds due to improved Landau damping. Unfortunately, the majority of nonlinear accelerator lattices turn out to be nonintegrable, producing chaotic motion and a complex network of stable and unstable resonances. Recent advances in finding the integrable nonlinear accelerator lattices have led to a proposal to construct at Fermilab a test accelerator with strong nonlinear focusing which avoids resonances and chaotic particle motion. This presentation will outline the main challenges, theoretical design solutions and construction status of the Integrable Optics Test Accelerator underway at Fermilab.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا